References of "Penocchio, Emanuele 50027883"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailNonequilibrium thermodynamics of light-induced reactions
Penocchio, Emanuele UL; Rao, Riccardo; Esposito, Massimiliano UL

in Journal of Chemical Physics (2021), 155

Current formulations of nonequilibrium thermodynamics of open chemical reaction networks only consider chemostats as free-energy sources sustaining nonequilibrium behaviors. Here, we extend the theory to ... [more ▼]

Current formulations of nonequilibrium thermodynamics of open chemical reaction networks only consider chemostats as free-energy sources sustaining nonequilibrium behaviors. Here, we extend the theory to include incoherent light as a source of free energy. We do so by relying on a local equilibrium assumption to derive the chemical potential of photons relative to the system they interact with. This allows us to identify the thermodynamic potential and the thermodynamic forces driving light-reacting chemical systems out-of-equilibrium. We use this framework to treat two paradigmatic photochemical mechanisms describing light-induced unimolecular reactions—namely, the adiabatic and diabatic mechanisms—and highlight the different thermodynamics they lead to. Furthermore, using a thermodynamic coarse-graining procedure, we express our findings in terms of commonly measured experimental quantities, such as quantum yields. [less ▲]

Detailed reference viewed: 26 (1 UL)
Full Text
Peer Reviewed
See detailNonequilibrium thermodynamics of non-ideal chemical reaction networks
Avanzini, Francesco UL; Penocchio, Emanuele UL; Falasco, Gianmaria UL et al

in Journal of Chemical Physics (2021), 154

All current formulations of nonequilibrium thermodynamics of open chemical reaction networks rely on the assumption of non-interacting species. We develop a general theory that accounts for interactions ... [more ▼]

All current formulations of nonequilibrium thermodynamics of open chemical reaction networks rely on the assumption of non-interacting species. We develop a general theory that accounts for interactions between chemical species within a mean-field approach using activity coefficients. Thermodynamic consistency requires that rate equations do not obey standard mass-action kinetics but account for the interactions with concentration dependent kinetic constants. Many features of the ideal formulations are recovered. Crucially, the thermodynamic potential and the forces driving non-ideal chemical systems out of equilibrium are identified. Our theory is general and holds for any mean-field expression of the interactions leading to lower bounded free energies. [less ▲]

Detailed reference viewed: 37 (3 UL)
Full Text
Peer Reviewed
See detailThermodynamic efficiency in dissipative chemistry
Penocchio, Emanuele UL; Rao, Riccardo; Esposito, Massimiliano UL

in Nature Communications (2019), 10(1), 1-5

Detailed reference viewed: 74 (2 UL)
Full Text
Peer Reviewed
See detailNegative differential response in chemical reactions
Falasco, Gianmaria UL; Cossetto, Tommaso UL; Penocchio, Emanuele UL et al

in New Journal of Physics (2019), 21

Detailed reference viewed: 149 (17 UL)
Full Text
Peer Reviewed
See detailIndividual-molecule perspective analysis of chemical reaction networks: the case of a light-driven supramolecular pump
Sabatino, Andrea; Penocchio, Emanuele UL; Ragazzon, Giulio et al

in Angewandte Chemie International Edition (2019)

Detailed reference viewed: 58 (0 UL)