References of "Parracino, Antonietta"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMagneto-optical activity in nonmagnetic hyperbolic nanoparticles
Kuttruff, Joel; Gabbani, Alessio; Petrucci, Gaia et al

in Physical Review Letters (2021), 127

Active nanophotonics can be realized by controlling the optical properties of materials with external magnetic fields. Here, we explore the influence of optical anisotropy on the magneto-optical activity ... [more ▼]

Active nanophotonics can be realized by controlling the optical properties of materials with external magnetic fields. Here, we explore the influence of optical anisotropy on the magneto-optical activity in non-magnetic hyperbolic nanoparticles. We demonstrate that the magneto-optical response is driven by fundamental electric and magnetic dipole modes induced by the hyperbolic dispersion. Magnetic circular dichroism experiments confirm the theoretical predictions and reveal tunable magneto-optical activity across the visible and near infrared spectral range. [less ▲]

Detailed reference viewed: 133 (12 UL)
Full Text
Peer Reviewed
See detailFabrication and Optical Characterization of Hyperbolic Nanoparticles on a Transparent Substrate
Iarossi, Marzia; Darvill, Daniel; Isoniemi, Tommi et al

in Proceedings of SPIE : The International Society for Optical Engineering (2019), 10927

We report on the fabrication and optical characterization of hyperbolic nanoparticles on a transparent substrate. These nanoparticles enable a separation of ohmic and radiative channels in the visible and ... [more ▼]

We report on the fabrication and optical characterization of hyperbolic nanoparticles on a transparent substrate. These nanoparticles enable a separation of ohmic and radiative channels in the visible and near-infrared frequency ranges. The presented architecture opens the pathway towards novel routes to exploit the light to energy conversion channels beyond what is offered by current plasmon-based nanostructures, possibly enabling applications spanning from thermal emission manipulation, theragnostic nano-devices, optical trapping and nano-manipulation, non-linear optical properties, plasmonenhanced molecular spectroscopy, photovoltaics and solar-water treatments, as well as heat-assisted ultra-dense and ultrafast magnetic recording. [less ▲]

Detailed reference viewed: 140 (2 UL)
Full Text
Peer Reviewed
See detailHyperbolic Meta-Antennas Enable Full Control of Scattering and Absorption of Light
Maccaferri, Nicolò UL; Zhao, Yingqi; Isoniemi, Tommi et al

in Nano Letters (2019), 19(3), 1851-1859

We introduce a novel concept of hybrid metal-dielectric meta-antenna supporting type II hyperbolic dispersion, which enables full control of absorption and scattering of light in the visible/near-infrared ... [more ▼]

We introduce a novel concept of hybrid metal-dielectric meta-antenna supporting type II hyperbolic dispersion, which enables full control of absorption and scattering of light in the visible/near-infrared spectral range. This ability lies in the different nature of the localized hyperbolic Bloch-like modes excited within the meta-antenna. The experimental evidence is corroborated by a comprehensive theoretical study. In particular, we demonstrate that two main modes, one radiative and one non-radiative, can be excited by direct coupling with the free-space radiation. We show that the scattering is the dominating electromagnetic decay channel, when an electric dipolar mode is induced in the system, whereas a strong absorption process occurs when a magnetic dipole is excited. Also, by varying the geometry of the system, the relative ratio of scattering and absorption, as well as their relative enhancement and/or quenching, can be tuned at will over a broad spectral range, thus enabling full control of the two channels. Importantly, both radiative and nonradiative modes supported by our architecture can be excited directly with far-field radiation. This is observed to occur even when the radiative channels (scattering) are almost totally suppressed, thereby making the proposed architecture suitable for practical applications. Finally, the hyperbolic meta-antennas possess both angular and polarization independent structural integrity, unlocking promising applications as hybrid meta-surfaces or as solvable nanostructures. [less ▲]

Detailed reference viewed: 166 (16 UL)