References of "Palisetty, Rakesh 50043763"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailOn the Performance of Cache-Free/Cache-Aided STBC-NOMA in Cognitive Hybrid Satellite-Terrestrial Networks
Singh, Vibhum UL; Solanki, Sourabh UL; Eappen, Geoffrey UL et al

in IEEE Wireless Communications Letters (2022), (Early Access), 1-1

Future wireless networks pose several challenges such as high spectral efficiency, wide coverage massive connectivity, low receiver complexity, etc. To this end, this letter investigates an overlay based ... [more ▼]

Future wireless networks pose several challenges such as high spectral efficiency, wide coverage massive connectivity, low receiver complexity, etc. To this end, this letter investigates an overlay based cognitive hybrid satellite-terrestrial network (CHSTN) combining non-orthogonal multiple access (NOMA) and conventional Alamouti space-time block coding (STBC) techniques. Herein, a decode-and-forward based secondary terrestrial network cooperates with a primary satellite network for dynamic spectrum access. Further, for reliable content delivery and low latency requirements, wireless caching is employed, whereby the secondary network can store the most popular contents of the primary network. Considering the relevant heterogeneous fading channel models and the NOMA-based imperfect successive interference cancellation, we examine the performance of CHSTN for the cache-free (CF) STBC-NOMA and the cache-aided (CA) STBC-NOMA schemes. We assess the outage probability expressions for primary and secondary networks and further, highlight the corresponding achievable diversity orders. Indicatively, the proposed CF/CA STBC-NOMA schemes for CHSTN perform significantly better than the benchmark standalone NOMA and OMA schemes. [less ▲]

Detailed reference viewed: 33 (17 UL)
Full Text
Peer Reviewed
See detailArea-Power Analysis of FFT Based Digital Beamforming for GEO, MEO, and LEO Scenarios
Palisetty, Rakesh UL; Eappen, Geoffrey UL; Gonzalez Rios, Jorge Luis UL et al

Scientific Conference (2022, June 19)

Satellite communication systems can provide seamless wireless coverage directly or through complementary ground terrestrial components and are projected to be incorporated into future wireless networks ... [more ▼]

Satellite communication systems can provide seamless wireless coverage directly or through complementary ground terrestrial components and are projected to be incorporated into future wireless networks, particularly 5G and beyond networks. Increased capacity and flexibility in telecom satellite payloads based on classic radio frequency technology have traditionally translated into increased power consumption and dissipation. Much of the analog hardware in a satellite communications payload can be replaced with highly integrated digital components that are often smaller, lighter, and less expensive, as well as software reprogrammable. Digital beamforming of thousands of beams simultaneously is not practical due to the limited power available onboard satellite processors. Reduced digital beamforming power consumption would enable the deployment of a full digital payload, resulting in comprehensive user applications. Beamforming can be implemented using matrix multiplication, hybrid methodology, or a discrete Fourier transform (DFT). Implementing DFT via fast Fourier transform (FFT) reduces the power consumption, process time, hardware requirements, and chip area. Therefore, in this paper, area-power efficient FFT architectures for digital beamforming are analyzed. The area in terms of look up tables (LUTs) is estimated and compared among conventional FFT, fully unrolled FFT, and a 4-bit quantized twiddle factor (TF) FFT. Further, for the typical satellite scenarios, area, and power estimation are reported. [less ▲]

Detailed reference viewed: 182 (52 UL)
Full Text
See detailSolar-Aerodynamic Formation Flight for 5G Experiments
Thoemel, Jan UL; Querol, Jorge UL; Bokal, Zhanna UL et al

in Proceedings of the 12th European CubeSatSymposium (2021, November 15)

Detailed reference viewed: 99 (24 UL)