![]() ; ; et al in European Journal of Paediatric Neurology (2022) Many epilepsy-associated genes have been identified over the last three decades, revealing a remarkable molecular heterogeneity with the shared outcome of recurrent seizures. Information about the genetic ... [more ▼] Many epilepsy-associated genes have been identified over the last three decades, revealing a remarkable molecular heterogeneity with the shared outcome of recurrent seizures. Information about the genetic landscape of epilepsies is scattered throughout the literature and answering the simple question of how many genes are associated with epilepsy is not straightforward. Here, we present a computationally driven analytical review of epilepsy-associated genes using the complete scientific literature in PubMed. Based on our search criteria, we identified a total of 738 epilepsy-associated genes. We further classified these genes into two Tiers. A broad gene list of 738 epilepsy-associated genes (Tier 2) and a narrow gene list composed of 143 epilepsy-associated genes (Tier 1). Our search criteria do not reflect the degree of association. The average yearly number of identified epilepsy-associated genes between 1992 and 2021 was 4.8. However, most of these genes were only identified in the last decade (2010–2019). Ion channels represent the largest class of epilepsy-associated genes. For many of these, both gain- and loss-of-function effects have been associated with epilepsy in recent years. We identify 28 genes frequently reported with heterogenous variant effects which should be considered for variant interpretation. Overall, our study provides an updated and manually curated list of epilepsy-related genes together with additional annotations and classifications reflecting the current genetic landscape of epilepsy. [less ▲] Detailed reference viewed: 15 (3 UL)![]() ; ; et al in Brain (2022), awac381 Neurodevelopmental disorders (NDDs), including severe pediatric epilepsy, autism, and intellectual disabilities are heterogeneous conditions in which clinical genetic testing can often identify a ... [more ▼] Neurodevelopmental disorders (NDDs), including severe pediatric epilepsy, autism, and intellectual disabilities are heterogeneous conditions in which clinical genetic testing can often identify a pathogenic variant. For many of them, genetic therapies will be tested in this or the coming years in clinical trials. In contrast to first-generation symptomatic treatments, the new disease-modifying precision medicines require a genetic test-informed diagnosis before a patient can be enrolled in a clinical trial. However, even in 2022, most identified genetic variants in NDD genes are ‘Variants of Uncertain Significance’. To safely enroll patients in precision medicine clinical trials, it is important to increase our knowledge about which regions in NDD-associated proteins can ‘tolerate’ missense variants and which ones are ‘essential’ and will cause a NDD when mutated. In addition, knowledge about functionally indispensable regions in the three-dimensional (3D) structure context of proteins can also provide insights into the molecular mechanisms of disease variants. We developed a novel consensus approach that overlays evolutionary, and population based genomic scores to identify 3D essential sites (Essential3D) on protein structures. After extensive benchmarking of AlphaFold predicted and experimentally solved protein structures, we generated the currently largest expert curated protein structure set for 242 NDDs and identified 14,377 Essential3D sites across 189 gene disorders associated proteins. We demonstrate that the consensus annotation of Essential3D sites improves prioritization of disease mutations over single annotations. The identified Essential3D sites were enriched for functional features such as intermembrane regions or active sites and discovered key inter-molecule interactions in protein complexes that were otherwise not annotated. Using the currently largest autism, developmental disorders, and epilepsies exome sequencing studies including >360,000 NDD patients and population controls, we found that missense variants at Essential3D sites are 8-fold enriched in patients. In summary, we developed a comprehensive protein structure set for 242 neurodevelopmental disorders and identified 14,377 Essential3D sites in these. All data are available at https://es-ndd.broadinstitute.org for interactive visual inspection to enhance variant interpretation and development of mechanistic hypotheses for 242 NDDs genes. The provided resources will enhance clinical variant interpretation and in silico drug target development for NDD-associated genes and encoded proteins. [less ▲] Detailed reference viewed: 21 (0 UL)![]() ; ; et al in Brain: a Journal of Neurology (2022) Clinically identified genetic variants in ion channels can be benign or cause disease by increasing or decreasing the protein function. Consequently, therapeutic decision-making is challenging without ... [more ▼] Clinically identified genetic variants in ion channels can be benign or cause disease by increasing or decreasing the protein function. Consequently, therapeutic decision-making is challenging without molecular testing of each variant. Our biophysical knowledge of ion channel structures and function is just emerging, and it is currently not well understood which amino acid residues cause disease when mutated.We sought to systematically identify biological properties associated with variant pathogenicity across all major voltage and ligand-gated ion channel families. We collected and curated 3,049 pathogenic variants from hundreds of neurodevelopmental and other disorders and 12,546 population variants for 30 ion channel or channel subunits for which a high-quality protein structure was available. Using a wide range of bioinformatics approaches, we computed 163 structural features and tested them for pathogenic variant enrichment. We developed a novel 3D spatial distance scoring approach that enables comparisons of pathogenic and population variant distribution across protein structures.We discovered and independently replicated that several pore residue properties and proximity to the pore axis were most significantly enriched for pathogenic variants compared to population variants. Using our 3D scoring approach, we showed that the strongest pathogenic variant enrichment was observed for pore-lining residues and alpha-helix residues within 5Å distance from the pore axis center and not involved in gating. Within the subset of residues located at the pore, the hydrophobicity of the pore was the feature most strongly associated with variant pathogenicity. We also found an association between the identified properties and both clinical phenotypes and functional in vitro assays for voltage-gated sodium channels (SCN1A, SCN2A, SCN8A) and N-methyl-D-aspartate (NMDA) receptor (GRIN1, GRIN2A, GRIN2B) encoding genes. In an independent expert-curated dataset of 1,422 neurodevelopmental disorder pathogenic patient variants and 679 electrophysiological experiments, we show that pore axis distance is associated with seizure age of onset and cognitive performance as well as differential gain vs. loss-of-channel function.In summary, we identified biological properties associated with ion-channel malfunction and show that these are correlated with in vitro functional read-outs and clinical phenotypes in patients with neurodevelopmental disorders. Our results suggest that clinical decision support algorithms that predict variant pathogenicity and function are feasible in the future. [less ▲] Detailed reference viewed: 25 (3 UL)![]() ; ; et al E-print/Working paper (2022) Clinically identified genetic variants in ion channels can be benign or cause disease by increasing or decreasing the protein function. Consequently, therapeutic decision-making is challenging without ... [more ▼] Clinically identified genetic variants in ion channels can be benign or cause disease by increasing or decreasing the protein function. Consequently, therapeutic decision-making is challenging without molecular testing of each variant. Our biophysical knowledge of ion channel structures and function is just emerging, and it is currently not well understood which amino acid residues cause disease when mutated.We sought to systematically identify biological properties associated with variant pathogenicity across all major voltage and ligand-gated ion channel families. We collected and curated 3,049 pathogenic variants from hundreds of neurodevelopmental and other disorders and 12,546 population variants for 30 ion channel or channel subunits for which a high-quality protein structure was available. Using a wide range of bioinformatics approaches, we computed 163 structural features and tested them for pathogenic variant enrichment. We developed a novel 3D spatial distance scoring approach that enables comparisons of pathogenic and population variant distribution across protein structures.We discovered and independently replicated that several pore residue properties and proximity to the pore axis were most significantly enriched for pathogenic variants compared to population variants. Using our novel 3D scoring approach, we showed that the strongest pathogenic variant enrichment was observed for pore-lining residues and alpha-helix residues within 5 A distance from the pore axis center and not involved in gating. Within the subset of residues located at the pore, the hydrophobicity of the pore was the feature most strongly associated with variant pathogenicity. We also found an association between the identified properties and both clinical phenotypes and fucntional in vitro assays for voltage-gated sodium channels (SCN1A, SCN2A, SCN8A) and N-methyl-D-aspartate (NMDA) receptor (GRIN1, GRIN2A, GRIN2B) encoding genes. In an independent expert-curated dataset of 1,422 neurodevelopmental disorder pathogenic patient variants, and 679 electrophysiological experiments that pore axis distance is associated with seizure age of onset and cognitive performance as well as differential gain vs. loss-of-channel function.In summary, we identified biological properties associated with ion-channel malfunction and show that these are correlated with in vitro functional read-outs and clinical phenotypes in patients with neurodevelopmental disorders. Our results suggest that clinical decision support algorithms that predict variant pathogenicity and function are feasible in the future.Competing Interest StatementThe authors have declared no competing interest.DSSPDictionary of Protein Secondary StructuregnomADGenome aggregation DatabaseGoFGain of functionGRIN genesGRIN1, GRIN2A. GRIN2BHGMDHuman Gene Mutation DatabaseNMDA receptorN-methyl-D-aspartate receptorGABA receptorGamma-aminobutyric acid receptorLoFLoss of functionSCN genesSCN1A, SCN2A, SCN8AVCFVariant Call Format [less ▲] Detailed reference viewed: 31 (0 UL)![]() ; ; et al E-print/Working paper (2022) Purpose Large copy number variants (CNVs) can cause a heterogeneous spectrum of rare and severe disorders. However, most CNVs are benign and are part of natural variation in human genomes. CNV ... [more ▼] Purpose Large copy number variants (CNVs) can cause a heterogeneous spectrum of rare and severe disorders. However, most CNVs are benign and are part of natural variation in human genomes. CNV pathogenicity classification, genotype-phenotype analyses, and therapeutic target identification are challenging and time-consuming tasks that require the integration and analysis of information from multiple scattered sources by experts. Methods We developed a web-application combining >250,000 patient and population CNVs together with a large set of biomedical annotations and provide tools for CNV classification based on ACMG/ClinGen guidelines and gene-set enrichment analyses. Results Here, we introduce the CNV-ClinViewer (https://cnv-ClinViewer.broadinstitute.org), an open-source web-application for clinical evaluation and visual exploration of CNVs. The application enables real-time interactive exploration of large CNV datasets in a user-friendly designed interface. Conclusion Overall, this resource facilitates semi-automated clinical CNV interpretation and genomic loci exploration and, in combination with clinical judgment, enables clinicians and researchers to formulate novel hypotheses and guide their decision-making process. Subsequently, the CNV-ClinViewer enhances for clinical investigators patient care and for basic scientists translational genomic research. [less ▲] Detailed reference viewed: 158 (1 UL)![]() ; ; et al in Proceedings of the National Academy of Sciences of the United States of America (2020) Interpretation of the colossal number of genetic variants identified from sequencing applications is one of the major bottlenecks in clinical genetics, with the inference of the effect of amino acid ... [more ▼] Interpretation of the colossal number of genetic variants identified from sequencing applications is one of the major bottlenecks in clinical genetics, with the inference of the effect of amino acid-substituting missense variations on protein structure and function being especially challenging. Here we characterize the three-dimensional (3D) amino acid positions affected in pathogenic and population variants from 1,330 disease-associated genes using over 14,000 experimentally solved human protein structures. By measuring the statistical burden of variations (i.e., point mutations) from all genes on 40 3D protein features, accounting for the structural, chemical, and functional context of the variations’ positions, we identify features that are generally associated with pathogenic and population missense variants. We then perform the same amino acid-level analysis individually for 24 protein functional classes, which reveals unique characteristics of the positions of the altered amino acids: We observe up to 46% divergence of the class-specific features from the general characteristics obtained by the analysis on all genes, which is consistent with the structural diversity of essential regions across different protein classes. We demonstrate that the function-specific 3D features of the variants match the readouts of mutagenesis experiments for BRCA1 and PTEN, and positively correlate with an independent set of clinically interpreted pathogenic and benign missense variants. Finally, we make our results available through a web server to foster accessibility and downstream research. Our findings represent a crucial step toward translational genetics, from highlighting the impact of mutations on protein structure to rationalizing the variants’ pathogenicity in terms of the perturbed molecular mechanisms. [less ▲] Detailed reference viewed: 103 (1 UL)![]() ; ; et al in Science Translational Medicine (2020), 12(556), 6848 Malfunctions of voltage-gated sodium and calcium channels (encoded by SCNxA and CACNA1x family genes, respectively) have been associated with severe neurologic, psychiatric, cardiac, and other diseases ... [more ▼] Malfunctions of voltage-gated sodium and calcium channels (encoded by SCNxA and CACNA1x family genes, respectively) have been associated with severe neurologic, psychiatric, cardiac, and other diseases. Altered channel activity is frequently grouped into gain or loss of ion channel function (GOF or LOF, respectively) that often corresponds not only to clinical disease manifestations but also to differences in drug response. Experimental studies of channel function are therefore important, but laborious and usually focus only on a few variants at a time. On the basis of known gene-disease mechanisms of 19 different diseases, we inferred LOF (n = 518) and GOF (n = 309) likely pathogenic variants from the disease phenotypes of variant carriers. By training a machine learning model on sequence- and structure-based features, we predicted LOF or GOF effects [area under the receiver operating characteristics curve (ROC) = 0.85] of likely pathogenic missense variants. Our LOF versus GOF prediction corresponded to molecular LOF versus GOF effects for 87 functionally tested variants in SCN1/2/8A and CACNA1I (ROC = 0.73) and was validated in exome-wide data from 21,703 cases and 128,957 controls. We showed respective regional clustering of inferred LOF and GOF nucleotide variants across the alignment of the entire gene family, suggesting shared pathomechanisms in the SCNxA/CACNA1x family genes. [less ▲] Detailed reference viewed: 195 (7 UL)![]() ; Hoksza, David ![]() in Nucleic Acids Research (2020) Human genome sequencing efforts have greatly expanded, and a plethora of missense variants identified both in patients and in the general population is now publicly accessible. Interpretation of the ... [more ▼] Human genome sequencing efforts have greatly expanded, and a plethora of missense variants identified both in patients and in the general population is now publicly accessible. Interpretation of the molecular-level effect of missense variants, however, remains challenging and requires a particular investigation of amino acid substitutions in the context of protein structure and function. Answers to questions like ‘Is a variant perturbing a site involved in key macromolecular interactions and/or cellular signaling?’, or ‘Is a variant changing an amino acid located at the protein core or part of a cluster of known pathogenic mutations in 3D?’ are crucial. Motivated by these needs, we developed MISCAST (missense variant to protein structure analysis web suite; http://miscast.broadinstitute.org/). MISCAST is an interactive and user-friendly web server to visualize and analyze missense variants in protein sequence and structure space. Additionally, a comprehensive set of protein structural and functional features have been aggregated in MISCAST from multiple databases, and displayed on structures alongside the variants to provide users with the biological context of the variant location in an integrated platform. We further made the annotated data and protein structures readily downloadable from MISCAST to foster advanced offline analysis of missense variants by a wide biological community. [less ▲] Detailed reference viewed: 76 (2 UL)![]() ; May, Patrick ![]() in Genome Medicine (2020), 12(28), Background: Classifying pathogenicity of missense variants represents a major challenge in clinical practice during the diagnoses of rare and genetic heterogeneous neurodevelopmental disorders (NDDs ... [more ▼] Background: Classifying pathogenicity of missense variants represents a major challenge in clinical practice during the diagnoses of rare and genetic heterogeneous neurodevelopmental disorders (NDDs). While orthologous gene conservation is commonly employed in variant annotation, approximately 80% of known disease-associated genes belong to gene families. The use of gene family information for disease gene discovery and variant interpretation has not yet been investigated on genome-wide scale. We empirically evaluate whether paralog conserved or non-conserved sites in human gene families are important in NDDs. Methods: Gene family information was collected from Ensembl. Paralog conserved sites were defined based on paralog sequence alignments. 10,068 NDD patients and 2,078 controls were statistically evaluated for de novo variant burden in gene families. Results: We demonstrate that disease-associated missense variants are enriched at paralog conserved sites across all disease groups and inheritance models tested. We developed a gene family de novo enrichment framework that identified 43 exome-wide enriched gene families including 98 de novo variant carrying genes in NDD patients of which 28 represent novel candidate genes for NDD which are brain expressed and under evolutionary constraint. Conclusion: This study represents the first method to incorporate gene-family information into a statistical framework to interpret variant data for NDDs and to discover newly NDD -associated genes. [less ▲] Detailed reference viewed: 111 (2 UL)![]() ; May, Patrick ![]() in European Journal of Human Genetics (2019) It is challenging to estimate genetic variant burden across different subtypes of epilepsy. Herein, we used a comparative approach to assess the diagnostic yield and genotype-phenotype correlations in the ... [more ▼] It is challenging to estimate genetic variant burden across different subtypes of epilepsy. Herein, we used a comparative approach to assess the diagnostic yield and genotype-phenotype correlations in the four most common brain lesions in patients with drug-resistant focal epilepsy. Targeted sequencing analysis was performed for a panel of 161 genes with a mean coverage of > 400x. Lesional tissue was histopathologically reviewed and dissected from hippocampal sclerosis (n=15), ganglioglioma (n=16), dysembryoplastic neuroepithelial tumors (n=8) and ocal cortical dysplasia type II (n=15). Peripheral blood (n=12) or surgical tissue samples histopathologically classified as lesion-free (n=42) were available for comparison. Variants were classified as pathogenic or likely pathogenic according to American College of Medical Genetics and Genomics guidelines. Overall, we identified pathogenic and likely pathogenic variants in 25.9% of patients with a mean coverage of 383x. The highest number of pathogenic/ likely pathogenic variants was observed in patients with ganglioglioma (43.75%; all somatic) and dysembryoplastic neuroepithelial tumors (37.5%; all somatic), and in 20% of cases with focal cortical dysplasia type II (13.33% somatic, 6.67% germline). Pathogenic/likely pathogenic positive genes were disorder-specific and BRAF V600E the only recurrent pathogenic variant. This study represents a reference for diagnostic yield across the four most common lesion entities in patients with drug-resistant focal epilepsy. The observed large variability in variant burden by epileptic lesion type calls for whole exome sequencing of histopathologically well characterized tissue in a diagnostic setting and in research to discover novel disease-associated genes. [less ▲] Detailed reference viewed: 113 (2 UL)![]() ; ; et al E-print/Working paper (2019) Inference of the structural and functional consequences of amino acid-altering missense variants is challenging and not yet scalable. Clinical and research applications of the colossal number of ... [more ▼] Inference of the structural and functional consequences of amino acid-altering missense variants is challenging and not yet scalable. Clinical and research applications of the colossal number of identified missense variants is thus limited. Here we describe the aggregation and analysis of large-scale genomic variation and structural biology data for 1,330 disease-associated genes. Comparing the burden of 40 structural, physicochemical, and functional protein features of altered amino acids with 3-dimensional coordinates, we found 18 and 14 features that are associated with pathogenic and population missense variants, respectively. Separate analyses of variants from 24 protein functional classes revealed novel function-dependent vulnerable features. We then devised a quantitative spectrum, identifying variants with higher pathogenic variant-associated features. Finally, we developed a web resource (MISCAST; http://miscast.broadinstitute.org/) for interactive analysis of variants on linear and tertiary protein structures. The biological impact of missense variants available through the webtool will assist researchers in hypothesizing variant pathogenicity and disease trajectories. [less ▲] Detailed reference viewed: 255 (1 UL)![]() ; ; et al in Nucleic Acids Research (2019) Clinical genetic testing has exponentially expanded in recent years, leading to an overwhelming amount of patient variants with high variability in pathogenicity and heterogeneous phenotypes. A large part ... [more ▼] Clinical genetic testing has exponentially expanded in recent years, leading to an overwhelming amount of patient variants with high variability in pathogenicity and heterogeneous phenotypes. A large part of the variant level data are comprehensively aggregated in public databases such as ClinVar. However, the ability to explore this rich resource and answer general questions such as “How many genes inside ClinVar are associated with a specific disease? or “In which part of the protein are patient variants located?” is limited and requires advanced bioinformatics processing. Here, we present Simple ClinVar (http://simple-clinvar.broadinstitute.org/) a web- server application that is able to provide variant, gene, and disease level summary statistics based on the entire ClinVar database in a dynamic and user-friendly web-interface. Overall, our web application is able to interactively answer basic questions regarding genetic variation and its known relationships to disease. By typing a disease term of interest, t he user can identify in seconds the genes and phenotypes most frequently reported to ClinVar. Subsets of variants can then be further explored, filtered, or mapped and visualized in the corresponding protein sequences. Our website will follow ClinVar monthly releases and provide easy access to rich ClinVar resources to a broader audience including basic and clinical scientists. [less ▲] Detailed reference viewed: 129 (2 UL)![]() ; May, Patrick ![]() E-print/Working paper (2019) Missense variant interpretation is challenging. Essential regions for protein function are conserved among gene family members, and genetic variants within these regions are potentially more likely to ... [more ▼] Missense variant interpretation is challenging. Essential regions for protein function are conserved among gene family members, and genetic variants within these regions are potentially more likely to confer risk to disease. Here, we generated 2,871 gene family protein sequence alignments involving 9,990 genes and performed missense variant burden analyses to identify novel essential protein regions. We mapped 2,219,811 variants from the general population into these alignments and compared their distribution with 65,034 missense variants from patients. With this gene family approach, we identified 398 regions enriched for patient variants spanning 33,887 amino acids in 1,058 genes. As a comparison, testing the same genes individually we identified less patient variant enriched regions involving only 2,167 amino acids and 180 genes. Next, we selected de novo variants from 6,753 patients with neurodevelopmental disorders and 1,911 unaffected siblings, and observed a 5.56-fold enrichment of patient variants in our identified regions (95% C.I. =2.76-Inf, p-value = 6.66×10−8). Using an independent ClinVar variant set, we found missense variants inside the identified regions are 111-fold more likely to be classified as pathogenic in comparison to benign classification (OR = 111.48, 95% C.I = 68.09-195.58, p-value < 2.2e−16). All patient variant enriched regions identified (PERs) are available online through a user-friendly platform for interactive data mining, visualization and download at http://per.broadinstitute.org. In summary, our gene family burden analysis approach identified novel patient variant enriched regions in protein sequences. This annotation can empower variant interpretation. [less ▲] Detailed reference viewed: 133 (0 UL)![]() ; ; et al in Bioinformatics (2019) The correct classification of missense variants as benign or pathogenic remains challenging. Pathogenic variants are expected to have higher deleterious prediction scores than benign variants in the same ... [more ▼] The correct classification of missense variants as benign or pathogenic remains challenging. Pathogenic variants are expected to have higher deleterious prediction scores than benign variants in the same gene. However, most of the existing variant annotation tools do not reference the score range of benign population variants on gene level. Here, we present a web-application, Variant Score Ranker, which enables users to rapidly annotate variants and perform gene-specific variant score ranking on the population level. We also provide an intuitive example of how gene- and population-calibrated variant ranking scores can improve epilepsy variant prioritization. [less ▲] Detailed reference viewed: 88 (4 UL)![]() ; ; et al in Biophysical Journal (2019, February 15), 116(3), 420-421 Elucidating molecular consequences of amino-acid-altering missense variants at scale is challenging. In this work, we explored whether features derived from three-dimensional (3D) protein structures can ... [more ▼] Elucidating molecular consequences of amino-acid-altering missense variants at scale is challenging. In this work, we explored whether features derived from three-dimensional (3D) protein structures can characterize patient missense variants across different protein classes with similar molecular level activities. The identified disease-associated features can advance our understanding of how a single amino acid substitution can lead to the etiology of monogenic disorders. For 1,330 disease-associated genes (>80%, 1,077/1,330 implicated in Mendelian disorders), we collected missense variants from the general population (gnomAD database, N=164,915) and patients (ClinVar and HGMD databases, N=32,923). We in silico mapped the variant positions onto >14k human protein 3D structures. We annotated the protein positions of variants with 40 structural, physiochemical, and functional features. We then grouped the genes into 24 protein classes based on their molecular functions and performed statistical association analyses with the features of population and patient variants. We identified 18 (out of 40) features that are associated with patient variants in general. Specifically, patient variants are less exposed to solvent (p<1.0e-100), enriched on b-sheets (p<2.37e-39), frequently mutate aromatic residues (p<1.0e-100), occur in ligand binding sites (p<1.0e-100) and are spatially close to phosphorylation sites (p<1.0e-100). We also observed differential protein-class-specific features. For three protein classes (signaling molecules, proteases and hydrolases), patient variants significantly perturb the disulfide bonds (p<1.0e-100). Only in immunity proteins, patient variants are enriched in flexible coils (p<1.65e-06). Kinases and cell junction proteins exhibit enrichment of patient variants around SUMOylation (p<1.0e-100) and methylation sites (p<9.29e-11), respectively. In summary, we studied shared and unique features associated with patient variants on protein structure across 24 protein classes, providing novel mechanistic insights. We generated an online resource that contains amino-acid-wise feature annotation-track for 1,330 genes, summarizes the patient-variant-associated features on residue level, and can guide variant interpretation. [less ▲] Detailed reference viewed: 151 (1 UL)![]() ; ; et al in Current Opinion in Neurology (2019) Purpose of review: Recent publications point to an increasingly important role of variants in genes encoding GABAA receptor subunits associated with both common and rare forms of epilepsies. The aim of ... [more ▼] Purpose of review: Recent publications point to an increasingly important role of variants in genes encoding GABAA receptor subunits associated with both common and rare forms of epilepsies. The aim of this review is to give an overview of the current clinical phenotypes, genetic findings and pathophysiological mechanisms related to GABAA receptor variants. Recent findings: Early work showed that inherited variants in GABRG2 and GABRA1 cause relatively mild forms of monogenic epilepsies in large families. More recent studies have revealed that de novo variants in several GABAA receptor genes cause severe developmental and epileptic encephalopathies, inherited variants cause remarkably variable phenotypes within the same pedigrees ranging from asymptomatic carriers to developmental and epileptic encephalopathies, and variants in all GABAA receptor genes are enriched in common forms of epilepsy, namely rolandic epilepsy and genetic generalized epilepsy. Analyses from cellular expression systems and mouse models suggest that all variants cause a loss of GABAA receptor function resulting in GABAergic disinhibition. Summary: Genetic studies have revealed a crucial role of the GABAergic system in the underlying pathogenesis of various forms of common and rare epilepsies. Our understanding of functional consequences of GABAA receptor variants provide an opportunity to develop precision-based therapeutic strategies that are hopefully free from the side-effect burden seen with currently available GABAergic drugs. [less ▲] Detailed reference viewed: 160 (1 UL)![]() ; ; et al E-print/Working paper (2019) Malfunctions of voltage-gated sodium and calcium channels (SCN and CACNA1 genes) have been associated with severe neurologic, psychiatric, cardiac and other diseases. Altered channel activity is ... [more ▼] Malfunctions of voltage-gated sodium and calcium channels (SCN and CACNA1 genes) have been associated with severe neurologic, psychiatric, cardiac and other diseases. Altered channel activity is frequently grouped into gain or loss of ion channel function (GOF or LOF, respectively) which is not only corresponding to clinical disease manifestations, but also to differences in drug response. Experimental studies of channel function are therefore important, but laborious and usually focus only on a few variants at a time. Based on known gene-disease-mechanisms, we here infer LOF (518 variants) and GOF (309 variants) of likely pathogenic variants from disease phenotypes of variant carriers. We show regional clustering of inferred GOF and LOF variants, respectively, across the alignment of the entire gene family, suggesting shared pathomechanisms in the SCN/CACNA1 genes. By training a machine learning model on sequence- and structure-based features we predict LOF- or GOF- associated disease phenotypes (ROC = 0.85) of likely pathogenic missense variants. We then successfully validate the GOF versus LOF prediction on 87 functionally tested variants in SCN1/2/8A and CACNA1I (ROC = 0.73) and in exome-wide data from > 100.000 cases and controls. Ultimately, functional prediction of missense variants in clinically relevant genes will facilitate precision medicine in clinical practice. [less ▲] Detailed reference viewed: 198 (0 UL)![]() ; ; et al in Biophysical Journal (2018, February 02), 114(3, Suppl. 1), 664 The functional interpretation of genetic variation in disease-associated genes is far outpaced by data generation. Existing algorithms for prediction of variant consequences do not adequately distinguish ... [more ▼] The functional interpretation of genetic variation in disease-associated genes is far outpaced by data generation. Existing algorithms for prediction of variant consequences do not adequately distinguish pathogenic variants from benign rare variants. This lack of statistical and bioinformatics analyses, accompanied by an ever-increasing number of identified variants in biomedical research and clinical applications, has become a major challenge. Established methods to predict the functional effect of genetic variation use the degree of amino acid conservation across species in linear protein sequence alignment. More recent methods include the spatial distribution pattern of known patient and control variants. Here, we propose to combine the linear conservation and spatial constrained based scores to devise a novel score that incorporates 3-dimensional structural properties of amino acid residues, such as the solvent-accessible surface area, degree of flexibility, secondary structure propensity and binding tendency, to quantify the effect of amino acid substitutions. For this study, we develop a framework for large-scale mapping of established linear sequence-based paralog and ortholog conservation scores onto the tertiary structures of human proteins. This framework can be utilized to map the spatial distribution of mutations on solved protein structures as well as homology models. As a proof of concept, using a homology model of the human Nav1.2 voltage-gated sodium channel structure, we observe spatial clustering in distinct domains of mutations, associated with Autism Spectrum Disorder (>20 variants) and Epilepsy (>100 variants), that exert opposing effects on channel function. We are currently characterizing all variants (>300k individuals) found in ClinVar, the largest disease variant database, as well as variants identified in >140k individuals from general population. The variant mapping framework and our score, informed with structural information, will be useful in identifying structural motifs of proteins associated with disease risk. [less ▲] Detailed reference viewed: 131 (2 UL) |
||