References of "Ottersten, Björn 50002797"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailExperimental evaluation of RF waveform designs for Wireless Power Transfer using Software Defined Radio
Gautam, Sumit UL; Kumar, Sumit UL; Chatzinotas, Symeon UL et al

in IEEE Access (2021), 9

The possibility to harvest energy from ambient radio-frequency (RF) sources has intrigued humankind for the past several decades. In this context, there has been a tremendously growing research interest ... [more ▼]

The possibility to harvest energy from ambient radio-frequency (RF) sources has intrigued humankind for the past several decades. In this context, there has been a tremendously growing research interest in the field of wireless power transfer (WPT) using the RF range of the electromagnetic (EM) spectrum. In this paper, we experimentally investigate the aspect of real-time energy harvesting (EH) via different types of waveform designs such as orthogonal frequency division multiplexing (OFDM), square, triangular, sinusoidal, and sawtooth. We make use of a Software Defined Radio (SDR) and a Powercast P21XXCSR-EVB EH module to carry out the experiments on a practical device to assess performance. Specifically, we are interested in obtaining some insights based on the comparison between the aforementioned waveform designs from the perspectives of the separation distance between the USRP and P21XXCSR-EVB EH module, and power emission via USRP. In this vein, we perform additional subsequent experiments after reporting the practical effectiveness of the OFDM waveform, which also follows our intuitive analysis. Correspondingly, we study the effect on WPT with variable USRP transmit power, the separation distance between the USRP and EH antennas, number of OFDM sub-carriers, and multipath setting. As an application of OFDM, the effectiveness of fifth generation-new radio (5G-NR) and long-term evolution (LTE) waveforms are also tested for the WPT mechanism. The demonstration of the EH is provided in terms of the above-mentioned investigation metrics while seeking the best waveform to support WPT. [less ▲]

Detailed reference viewed: 44 (2 UL)
Full Text
Peer Reviewed
See detailExperimental evaluation of RF waveform designs for Wireless Power Transfer using Software Defined Radio
Gautam, Sumit UL; Kumar, Sumit UL; Chatzinotas, Symeon UL et al

in IEEE Access (2021), 9

The possibility to harvest energy from ambient radio-frequency (RF) sources has intrigued humankind for the past several decades. In this context, there has been a tremendously growing research interest ... [more ▼]

The possibility to harvest energy from ambient radio-frequency (RF) sources has intrigued humankind for the past several decades. In this context, there has been a tremendously growing research interest in the field of wireless power transfer (WPT) using the RF range of the electromagnetic (EM) spectrum. In this paper, we experimentally investigate the aspect of real-time energy harvesting (EH) via different types of waveform designs such as orthogonal frequency division multiplexing (OFDM), square, triangular, sinusoidal, and sawtooth. We make use of a Software Defined Radio (SDR) and a Powercast P21XXCSR-EVB EH module to carry out the experiments on a practical device to assess performance. Specifically, we are interested in obtaining some insights based on the comparison between the aforementioned waveform designs from the perspectives of the separation distance between the USRP and P21XXCSR-EVB EH module, and power emission via USRP. In this vein, we perform additional subsequent experiments after reporting the practical effectiveness of the OFDM waveform, which also follows our intuitive analysis. Correspondingly, we study the effect on WPT with variable USRP transmit power, the separation distance between the USRP and EH antennas, number of OFDM sub-carriers, and multipath setting. As an application of OFDM, the effectiveness of fifth generation-new radio (5G-NR) and long-term evolution (LTE) waveforms are also tested for the WPT mechanism. The demonstration of the EH is provided in terms of the above-mentioned investigation metrics while seeking the best waveform to support WPT. [less ▲]

Detailed reference viewed: 44 (2 UL)
Full Text
Peer Reviewed
See detailHybrid Active-and-Passive Relaying Model for 6G-IoT Greencom Networks with SWIPT
Gautam, Sumit UL; Solanki, Sourabh UL; Sharma, Shree Krishna UL et al

in Sensors (2021), 21

In order to support a massive number of resource-constrained Internet-of-Things (IoT) devices and machine-type devices, it is crucial to design a future beyond 5G/6G wireless networks in an energy ... [more ▼]

In order to support a massive number of resource-constrained Internet-of-Things (IoT) devices and machine-type devices, it is crucial to design a future beyond 5G/6G wireless networks in an energy-efficient manner while incorporating suitable network coverage expansion methodologies. To this end, this paper proposes a novel two-hop hybrid active-and-passive relaying scheme to facilitate simultaneous wireless information and power transfer (SWIPT) considering both time-switching (TS) and power-splitting (PS) receiver architectures, while dynamically modelling the involved dual-hop time-period (TP) metric. An optimization problem is formulated to jointly optimize the throughput, harvested energy, and transmit power of a SWIPT-enabled system with the proposed hybrid scheme. In this regard, we provide two distinct ways to obtain suitable solutions based on the Lagrange dual technique and Dinkelbach method assisted convex programming, respectively, where both the approaches yield an appreciable solution within polynomial computational time. The experimental results are obtained by directly solving the primal problem using a non-linear optimizer. Our numerical results in terms of weighted utility function show the superior performance of the proposed hybrid scheme over passive repeater-only and active relay-only schemes, while also depicting their individual performance benefits over the corresponding benchmark SWIPT systems with the fixed-TP. [less ▲]

Detailed reference viewed: 45 (0 UL)
Full Text
Peer Reviewed
See detailUAV Relay-Assisted Emergency Communications in IoT Networks: Resource Allocation and Trajectory Optimization
Tran Dinh, Hieu UL; Nguyen, van Dinh UL; Chatzinotas, Symeon UL et al

in IEEE Transactions on Wireless Communications (2021)

Unmanned aerial vehicle (UAV) communication hasemerged as a prominent technology for emergency communi-cations (e.g., natural disaster) in the Internet of Things (IoT)networks to enhance the ability of ... [more ▼]

Unmanned aerial vehicle (UAV) communication hasemerged as a prominent technology for emergency communi-cations (e.g., natural disaster) in the Internet of Things (IoT)networks to enhance the ability of disaster prediction, damageassessment, and rescue operations promptly. A UAV can bedeployed as a flying base station (BS) to collect data from time-constrained IoT devices and then transfer it to a ground gateway(GW). In general, the latency constraint at IoT devices and UAV’slimited storage capacity highly hinder practical applicationsof UAV-assisted IoT networks. In this paper, full-duplex (FD)radio is adopted at the UAV to overcome these challenges. Inaddition, half-duplex (HD) scheme for UAV-based relaying isalso considered to provide a comparative study between twomodes (viz., FD and HD). Herein, a device is considered tobe successfully served iff its data is collected by the UAV andconveyed to GW timely during flight time. In this context,we aim to maximize the number of served IoT devices byjointly optimizing bandwidth, power allocation, and the UAVtrajectory while satisfying each device’s requirement and theUAV’s limited storage capacity. The formulated optimizationproblem is troublesome to solve due to its non-convexity andcombinatorial nature. Towards appealing applications, we firstrelax binary variables into continuous ones and transform theoriginal problem into a more computationally tractable form.By leveraging inner approximation framework, we derive newlyapproximated functions for non-convex parts and then develop asimple yet efficient iterative algorithm for its solutions. Next,we attempt to maximize the total throughput subject to thenumber of served IoT devices. Finally, numerical results showthat the proposed algorithms significantly outperform benchmarkapproaches in terms of the number of served IoT devices andsystem throughput. [less ▲]

Detailed reference viewed: 38 (6 UL)
Full Text
Peer Reviewed
See detailA Cubesat-ready Phase Synchronization Digital Payload for Coherent Distributed Remote Sensing Missions
Querol, Jorge UL; Merlano Duncan, Juan Carlos UL; Martinez Marrero, Liz UL et al

in Proceedings of the 2021 International Geoscience and Remote Sensing Symposium (2021, July 15)

Distributed antenna arrays, fractionated payloads and cooperative platforms can provide unprecedented performance in the next generation of spaceborne communications and remote sensing systems. Remote ... [more ▼]

Distributed antenna arrays, fractionated payloads and cooperative platforms can provide unprecedented performance in the next generation of spaceborne communications and remote sensing systems. Remote phase synchronization of physically separated oscillators is the first step towards a coherent operation of distributed systems. This work shows the preliminary results of a TDD remote phase synchronization algorithm with a master-follower architecture. Herein, we describe the implementation and validation of the proposed algorithm. The implementation has been conducted in a Cubesat-ready software defined radio and validated at the end-to-end satellite communications testbed available at the University of Luxembourg. [less ▲]

Detailed reference viewed: 45 (11 UL)
Full Text
Peer Reviewed
See detailMulti-Antenna Data-Driven Eavesdropping Attacks and Symbol-Level Precoding Countermeasures
Mayouche, Abderrahmane UL; Alves Martins, Wallace UL; Tsinos, Christos UL et al

in IEEE Open Journal of Vehicular Technology (2021)

In this work, we consider secure communications in wireless multi-user (MU) multiple-input single-output (MISO) systems with channel coding in the presence of a multi-antenna eavesdropper (Eve), who is a ... [more ▼]

In this work, we consider secure communications in wireless multi-user (MU) multiple-input single-output (MISO) systems with channel coding in the presence of a multi-antenna eavesdropper (Eve), who is a legit user trying to eavesdrop other users. In this setting, we exploit machine learning (ML) tools to design soft and hard decoding schemes by using precoded pilot symbols as training data. The proposed ML frameworks allow an Eve to determine the transmitted message with high accuracy. We thereby show that MU-MISO systems are vulnerable to such eavesdropping attacks even when relatively secure transmission techniques are employed, such as symbol-level precoding (SLP). To counteract this attack, we propose two novel SLP-based schemes that increase the bit-error rate at Eve by impeding the learning process. We design these two security-enhanced schemes to meet different requirements regarding runtime, security, and power consumption. Simulation results validate both the ML-based eavesdropping attacks as well as the countermeasures, and show that the gain in security is achieved without affecting the decoding performance at the intended users. [less ▲]

Detailed reference viewed: 39 (2 UL)
Full Text
Peer Reviewed
See detailMassive MIMO under Double Scattering Channels: Power Minimization and Congestion Controls
Trinh, van Chien UL; Ngo, Quoc Hien; Chatzinotas, Symeon UL et al

in Massive MIMO under Double Scattering Channels: Power Minimization and Congestion Controls (2021, June 14)

This paper considers a massive MIMO system under the double scattering channels. We derive a closed-form expression of the uplink ergodic spectral efficiency (SE) by exploiting the maximum-ratio combining ... [more ▼]

This paper considers a massive MIMO system under the double scattering channels. We derive a closed-form expression of the uplink ergodic spectral efficiency (SE) by exploiting the maximum-ratio combining technique with imperfect channel state information. We then formulate and solve a total uplink data power optimization problem that aims at simultaneously satisfying the required SEs from all the users with limited power resources. We further propose algorithms to cope with the congestion issue appearing when at least one user is served by lower SE than requested. Numerical results illustrate the effectiveness of our proposed power optimization. More importantly, our proposed congestion-handling algorithms can guarantee the required SEs to many users under congestion, even when the SE requirement is high. [less ▲]

Detailed reference viewed: 42 (4 UL)
Full Text
Peer Reviewed
See detailExploiting Jamming Attacks for Energy Harvesting in Massive MIMO Systems
Al-Hraishawi, Hayder UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

Scientific Conference (2021, June)

In this paper, the performance of an RF energy harvesting scheme for multi-user massive multiple-input multiple-output (MIMO) is investigated in the presence of multiple active jammers. The key idea is to ... [more ▼]

In this paper, the performance of an RF energy harvesting scheme for multi-user massive multiple-input multiple-output (MIMO) is investigated in the presence of multiple active jammers. The key idea is to exploit the jamming transmissions as an energy source to be harvested at the legitimate users. To this end, the achievable uplink sum rate expressions are derived in closed-form for two different antenna configurations. An optimal time-switching policy is also proposed to ensure user-fairness in terms of both harvested energy and achievable rate. Besides, the essential trade-off between the harvested energy and achievable sum rate are quantified in closed-form. Our analysis reveals that the massive MIMO systems can make use of RF signals of the jamming attacks for boosting the amount of harvested energy at the served users. Numerical results illustrate the effectiveness of the derived closed-form expressions over Monte-Carlo simulations. [less ▲]

Detailed reference viewed: 28 (1 UL)
Full Text
Peer Reviewed
See detailEnergy Efficiency Optimization Technique for SWIPT-enabled Multi-Group Multicasting Systems with Heterogeneous Users
Gautam, Sumit UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

in The international Conference on Acoustics, Speech, & Signal Processing (ICASSP) (2021, June)

We consider a multi-group (MG) multicasting (MC) system wherein a multi-antenna transmitter serves heterogeneous users capable of either information decoding (ID) or energy harvesting (EH), or both. In ... [more ▼]

We consider a multi-group (MG) multicasting (MC) system wherein a multi-antenna transmitter serves heterogeneous users capable of either information decoding (ID) or energy harvesting (EH), or both. In this context, we investigate a precoder design framework to explicitly serve the ID and EH users categorized within certain MC and EH groups. Specifically, the ID users are categorized within multiple MC groups while the EH users are a part of single (last) group. We formulate a problem to optimize the energy efficiency in the considered scenario under a quality-of-service (QoS) constraint. An algorithm based on Dinkelback method, slack-variable replacement, and second-order conic programming (SOCP)/semi-definite relaxation (SDR) is proposed to obtain a suitable solution for the above-mentioned fractional-objective dependent non-convex problem. Simulation results illustrate the benefits of proposed algorithm under several operating conditions and parameter values, while drawing a comparison between the two proposed methods. [less ▲]

Detailed reference viewed: 54 (4 UL)
Full Text
Peer Reviewed
See detailBroadband Non-Geostationary Satellite Communication Systems: Research Challenges and Key Opportunities
Al-Hraishawi, Hayder UL; Chatzinotas, Symeon UL; Ottersten, Björn UL

Scientific Conference (2021, June)

Besides conventional geostationary (GSO) satellite broadband communication services, non-geostationary (NGSO) satellites are envisioned to support various new communication use cases from countless ... [more ▼]

Besides conventional geostationary (GSO) satellite broadband communication services, non-geostationary (NGSO) satellites are envisioned to support various new communication use cases from countless industries. These new scenarios bring many unprecedented challenges that will be discussed in this paper alongside with several potential future research opportunities. NGSO systems are known for various advantages, including their important features of low cost, lower propagation delay, smaller size, and lower losses in comparison to GSO satellites. However, there are still many deployment challenges to be tackled to ensure seamless integration not only with GSO systems but also with terrestrial networks. In this paper, we discuss several key challenges including satellite constellation and architecture designs, coexistence with GSO systems in terms of spectrum access and regulatory issues, resource management algorithms, and NGSO networking requirements. Additionally, the latest progress in provisioning secure communication via NGSO systems is discussed. Finally, this paper identifies multiple important open issues and research directions to inspire further studies towards the next generation of satellite networks. [less ▲]

Detailed reference viewed: 28 (4 UL)
Full Text
Peer Reviewed
See detailA design strategy for phase synchronization in Precoding-enabled DVB-S2X user terminals
Martinez Marrero, Liz UL; Merlano Duncan, Juan Carlos UL; Querol, Jorge UL et al

Scientific Conference (2021, June)

This paper address the design of a phase tracking block for the DVB-S2X user terminals in a satellite precoding system. The spectral characteristics of the phase noise introduced by the oscillator, the ... [more ▼]

This paper address the design of a phase tracking block for the DVB-S2X user terminals in a satellite precoding system. The spectral characteristics of the phase noise introduced by the oscillator, the channel, and the thermal noise at the receiver are taken into account. Using the expected phase noise mask, the optimal parameters for a second-order PLL intended to track channel variations from the pilots are calculated. To validate the results a Simulink model was implemented considering the characteristics of the hardware prototype. The performance of the design was evaluated in terms of the accuracy and stability for the frame structure of superframe Format 2, as described in Annex E of DVB-S2X. [less ▲]

Detailed reference viewed: 92 (6 UL)
Full Text
Peer Reviewed
See detailChannel Modeling and Analysis of Reconfigurable Intelligent Surfaces Assisted Vehicular Networks
Kong, Long UL; He, Jiguang; Ai, Yun et al

Scientific Conference (2021, June)

Detailed reference viewed: 67 (4 UL)
Full Text
Peer Reviewed
See detailEnergy Minimization in UAV-Aided Networks: Actor-Critic Learning for Constrained Scheduling Optimization
Yuan, Yaxiong UL; Lei, Lei UL; Vu, Thang Xuan UL et al

in IEEE Transactions on Vehicular Technology (2021)

In unmanned aerial vehicle (UAV) applications, the UAV's limited energy supply and storage have triggered the development of intelligent energy-conserving scheduling solutions. In this paper, we ... [more ▼]

In unmanned aerial vehicle (UAV) applications, the UAV's limited energy supply and storage have triggered the development of intelligent energy-conserving scheduling solutions. In this paper, we investigate energy minimization for UAV-aided communication networks by jointly optimizing data-transmission scheduling and UAV hovering time. The formulated problem is combinatorial and non-convex with bilinear constraints. To tackle the problem, firstly, we provide an optimal relax-and-approximate solution and develop a near-optimal algorithm. Both the proposed solutions are served as offline performance benchmarks but might not be suitable for online operation. To this end, we develop a solution from a deep reinforcement learning (DRL) aspect. The conventional RL/DRL, e.g., deep Q-learning, however, is limited in dealing with two main issues in constrained combinatorial optimization, i.e., exponentially increasing action space and infeasible actions. The novelty of solution development lies in handling these two issues. To address the former, we propose an actor-critic-based deep stochastic online scheduling (AC-DSOS) algorithm and develop a set of approaches to confine the action space. For the latter, we design a tailored reward function to guarantee the solution feasibility. Numerical results show that, by consuming equal magnitude of time, AC-DSOS is able to provide feasible solutions and saves 29.94% energy compared with a conventional deep actor-critic method. Compared to the developed near-optimal algorithm, AC-DSOS consumes around 10% higher energy but reduces the computational time from minute-level to millisecond-level. [less ▲]

Detailed reference viewed: 56 (13 UL)
Full Text
Peer Reviewed
See detailTrend-Aware Proactive Caching via Tensor Train Decomposition: A Bayesian Viewpoint
Mehrizi Rahmat Abadi, Sajad UL; X. Vu, Thang; Chatzinotas, Symeon UL et al

in IEEE Open Journal of the Communications Society (2021), (4369),

Detailed reference viewed: 49 (7 UL)
Full Text
Peer Reviewed
See detailTrend-Aware Proactive Caching via Tensor Train Decomposition: A Bayesian Viewpoint
Mehrizi Rahmat Abadi, Sajad UL; X. Vu, Thang; Chatzinotas, Symeon UL et al

in IEEE Open Journal of the Communications Society (2021), (4369),

Detailed reference viewed: 49 (7 UL)
Full Text
Peer Reviewed
See detailTrend-Aware Proactive Caching via Tensor Train Decomposition: A Bayesian Viewpoint
Mehrizi Rahmat Abadi, Sajad UL; X. Vu, Thang; Chatzinotas, Symeon UL et al

in IEEE Open Journal of the Communications Society (2021), (4369),

Detailed reference viewed: 49 (7 UL)
Full Text
Peer Reviewed
See detailTrend-Aware Proactive Caching via Tensor Train Decomposition: A Bayesian Viewpoint
Mehrizi Rahmat Abadi, Sajad UL; X. Vu, Thang; Chatzinotas, Symeon UL et al

in IEEE Open Journal of the Communications Society (2021), (4369),

Detailed reference viewed: 49 (7 UL)
Full Text
Peer Reviewed
See detailTrend-Aware Proactive Caching via Tensor Train Decomposition: A Bayesian Viewpoint
Mehrizi Rahmat Abadi, Sajad UL; X. Vu, Thang; Chatzinotas, Symeon UL et al

in IEEE Open Journal of the Communications Society (2021), (4369),

Detailed reference viewed: 49 (7 UL)
Full Text
Peer Reviewed
See detail5G-SpaceLab
Querol, Jorge UL; Abdalla, Abdelrahman UL; Bokal, Zhanna UL et al

Poster (2021, April 19)

The new phase of space exploration involves a growing number of human and robotic missions with varying communication and service requirements. Continuous, maximum coverage of areas where activities are ... [more ▼]

The new phase of space exploration involves a growing number of human and robotic missions with varying communication and service requirements. Continuous, maximum coverage of areas where activities are concentrated and orbiting missions (single spacecraft or constellations) around the Earth, Moon or Mars will be particularly challenging. The standardization of the 5G Non-Terrestrial Networks (NTN) has already begun [1], and nothing prevents 5G from becoming a common communications standard supporting space resource missions [2]. The 5G Space Communications Lab (5G-SpaceLab) is an interdisciplinary experimental platform, funded by the Luxembourg Space Agency and is part of the Space Research Program of SnT. The lab allows users to design and emulate realistic space communications and control scenarios for the next-generation of space applications. The capabilities of the 5G-SpaceLab testbed combine the experience of different disciplines including space communications, space and satellite mission design, and space robotics. The most relevant include the demonstration of SDR 5G NTN terminals including NB-IoT, emulation of space communications channel scenarios (e.g. link budget, delay, Doppler…), small satellite platform and payload design and testing, satellite swarm flight formation, lunar rover and robotic arm control and AI-powered telerobotics. Earth-Moon communications is one of the scenarios demonstrated in the 5G-SpaceLab. Bidirectional communication for the teleoperation of lunar rovers for near real-time operations including data collection and sensors feedback will be tested. AI-based approaches for perception and control will be developed to overcome communication delays and to provide safer, trustworthy, and efficient remote control of the rovers. [1] 3GPP Release 17 Timeline. [Online]. Available: https://www.3gpp.org/release-17 [2] Nokia, Nokia selected by NASA to build first ever cellular network on the Moon. [Online]. Available: https://www.nokia.com/about-us/news/releases/2020/10/19/nokia-selected-by-nasa-to-build-first-ever-cellular-network-on-the-moon/ [less ▲]

Detailed reference viewed: 232 (18 UL)