References of "Olivares Mendez, Miguel Angel 50002787"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe Best Space Resource is the One You Can Catch and Reuse
Hubert Delisle, Maxime UL; Yalcin, Baris Can UL; Martinez Luna, Carol UL et al

Poster (2022, May 03)

From the beginning of space exploration more than 60 years ago, only a few in-orbit objects have been removed or reused. In fact, the Kessler Syndrome states that the number of space debris is growing ... [more ▼]

From the beginning of space exploration more than 60 years ago, only a few in-orbit objects have been removed or reused. In fact, the Kessler Syndrome states that the number of space debris is growing exponentially [1], leaving unused uncooperative objects orbiting at high velocities at several altitudes, especially in Low-Earth Orbit (LEO). In other words, the situation brings up two main critical issues: not only a non-sustainable space environment for satellite missions, with orbit saturation, but also the creation of an unsafe place for future human-related space exploration missions. Active Debris Removal is a possible solution for tackling the problem of space debris. Despite being extremely challenging, catching autonomously and harmlessly an uncooperative object tumbling at high velocity demands reliability, compliance and robustness. The fruitful collaboration between industry and academia (Spacety Luxembourg - SnT-SpaceR research group at the University of Luxembourg), is leading to the cutting-edge concept of a two-step capturing mechanism. A first ‘soft capture’ ensures that the debris is received softly while dampening any vibrations generated during the contact. Then, a ‘hard capture’ secures the debris so that it would be deorbited or safely shipped for other orbits or space stations for reuse. Capturing debris and decommissioned in-orbit objects for recycling or reusing can be the anchor of new opportunities in space and beyond. Most of the objects in orbit can have aluminum parts, besides other beneficial materials among their subsystems, such as solar panels, antennas or electronics which can be reused. To maximize space resources reusability, it is important to not harm the target. Capturing solutions such as harpoons or rigid interfaces can cause damage to the targets, resulting in hardly exploitable resources, and even more smaller debris tumbling in orbit [2]. An application of the proposed capturing technology would be to collect defunct satellites and debris, thus contributing to a more sustainable environment in space, gathering those on a possible recycling orbit or to any future Space Station for recycling. References [1] Drmola J. and Hubik T., Kessler Syndrome: System Dynamics Model (2018), In-Space Policy, 44–45, 29–39 [2] Zhao P., Liu J. and Wu C., Survey on Research and Development of On-Orbit Active Debris Removal Methods (2020), Sci China Tech Sci, 63: 2188–2210 [less ▲]

Detailed reference viewed: 45 (18 UL)
Full Text
Peer Reviewed
See detailET-Class, an Energy Transfer-based Classification of Space Debris Removal Methods and Missions
Yalcin, Baris Can UL; Martinez Luna, Carol UL; Hubert Delisle, Maxime UL et al

in Frontiers in Space Technologies (2022)

Space debris is positioned as a fatal problem for current and future space missions. Many e ective space debris removal methods have been proposed in the past decade, and several techniques have been ... [more ▼]

Space debris is positioned as a fatal problem for current and future space missions. Many e ective space debris removal methods have been proposed in the past decade, and several techniques have been either tested on the ground or in parabolic ight experiments. Nevertheless, no uncooperative debris has been removed from any orbit until this moment. Therefore, to expand this research eld and progress the development of space debris removal technologies, this paper reviews and compares the existing technologies with past, present, and future methods and missions. Moreover, since one of the critical problems when designing space debris removal solutions is how to transfer the energy between the chaser/de-orbiting kit and target during the rst interaction, this paper proposes a novel classi cation approach, named ET-Class (Energy Transfer Class). This classi cation approach provides an energy-based perspective to the space debris phenomenon by classifying how existing methods dissipate or store energy during rst contact. [less ▲]

Detailed reference viewed: 57 (9 UL)
Full Text
See detailHow to catch a space debris
Yalcin, Baris Can UL; Martinez Luna, Carol UL; Hubert Delisle, Maxime UL et al

Poster (2021, November 18)

The partnership between SpaceR and Spacety Luxembourg aims to develop cutting edge active space debris removal solutions that can be implemented into small cube sats The solution will take the advantage ... [more ▼]

The partnership between SpaceR and Spacety Luxembourg aims to develop cutting edge active space debris removal solutions that can be implemented into small cube sats The solution will take the advantage of latest advancements in many tech domains, such as gecko like sticky adhesives and energy efficient shape memory alloy materials. [less ▲]

Detailed reference viewed: 86 (34 UL)
Full Text
See detailProceedings of the 12th European CubeSatSymposium
Thoemel, Jan UL; Querol, Jorge UL; Bokal, Zhanna UL et al

in Proceedings of the 12th European CubeSatSymposium (2021, November 15)

Detailed reference viewed: 58 (11 UL)
Full Text
See detailTowards incremental autonomy framework for on-orbit vision-based grasping
Barad, Kuldeep Rambhai UL; Martinez Luna, Carol UL; Dentler, Jan et al

in Proceedings of the International Astronautical Congress, IAC-2021 (2021, October 29)

This work presents a software-oriented autonomy framework that enables the incremental development of high robotic autonomy. The autonomy infrastructure in space applications is often cost-driven and ... [more ▼]

This work presents a software-oriented autonomy framework that enables the incremental development of high robotic autonomy. The autonomy infrastructure in space applications is often cost-driven and built for a narrow time/complexity domain. In domains like On-orbit Servicing Assembly and Manufacturing (OSAM), this prevents scalability and generalizability, motivating a more consistent approach for the incremental development of robotic autonomy. For this purpose, the problem of vision-based grasping is described as a building block for high autonomy of dexterous space robots. Subsequently, the need for a framework is highlighted to enable bottom-up development of general autonomy with vision-based grasping as the starting point. The preliminary framework presented here comprises three components. First, an autonomy level classification provides a clear description of the autonomous behavior of the system. The stack abstraction provides a general classification of the development layers. Finally, the generic execution architecture condenses the flow of translating a high-level task description into real-world sense-planact routines. Overall, this work lays down foundational elements towards development of general robotic autonomy for scalablity in space application domains like OSAM. [less ▲]

Detailed reference viewed: 85 (16 UL)
Full Text
Peer Reviewed
See detail5G-SpaceLab
Querol, Jorge UL; Abdalla, Abdelrahman UL; Bokal, Zhanna UL et al

Poster (2021, April 19)

The new phase of space exploration involves a growing number of human and robotic missions with varying communication and service requirements. Continuous, maximum coverage of areas where activities are ... [more ▼]

The new phase of space exploration involves a growing number of human and robotic missions with varying communication and service requirements. Continuous, maximum coverage of areas where activities are concentrated and orbiting missions (single spacecraft or constellations) around the Earth, Moon or Mars will be particularly challenging. The standardization of the 5G Non-Terrestrial Networks (NTN) has already begun [1], and nothing prevents 5G from becoming a common communications standard supporting space resource missions [2]. The 5G Space Communications Lab (5G-SpaceLab) is an interdisciplinary experimental platform, funded by the Luxembourg Space Agency and is part of the Space Research Program of SnT. The lab allows users to design and emulate realistic space communications and control scenarios for the next-generation of space applications. The capabilities of the 5G-SpaceLab testbed combine the experience of different disciplines including space communications, space and satellite mission design, and space robotics. The most relevant include the demonstration of SDR 5G NTN terminals including NB-IoT, emulation of space communications channel scenarios (e.g. link budget, delay, Doppler…), small satellite platform and payload design and testing, satellite swarm flight formation, lunar rover and robotic arm control and AI-powered telerobotics. Earth-Moon communications is one of the scenarios demonstrated in the 5G-SpaceLab. Bidirectional communication for the teleoperation of lunar rovers for near real-time operations including data collection and sensors feedback will be tested. AI-based approaches for perception and control will be developed to overcome communication delays and to provide safer, trustworthy, and efficient remote control of the rovers. [1] 3GPP Release 17 Timeline. [Online]. Available: https://www.3gpp.org/release-17 [2] Nokia, Nokia selected by NASA to build first ever cellular network on the Moon. [Online]. Available: https://www.nokia.com/about-us/news/releases/2020/10/19/nokia-selected-by-nasa-to-build-first-ever-cellular-network-on-the-moon/ [less ▲]

Detailed reference viewed: 372 (43 UL)
Full Text
Peer Reviewed
See detailSORA Methodology for Multi-UAS Airframe Inspections in an Airport
Martinez Luna, Carol UL; Sanchez Cuevas, Pedro Jesus UL; Gerasimou, Simos et al

in Drones (2021), 5(4 141),

Deploying Unmanned Aircraft Systems (UAS) in safety- and business-critical operations requires demonstrating compliance with applicable regulations and a comprehensive understanding of the residual risk ... [more ▼]

Deploying Unmanned Aircraft Systems (UAS) in safety- and business-critical operations requires demonstrating compliance with applicable regulations and a comprehensive understanding of the residual risk associated with the UAS operation. To support these activities and enable the safe deployment of UAS into civil airspace, the European Union Aviation Safety Agency (EASA) has established a UAS regulatory framework that mandates the execution of safety risk assessment for UAS operations in order to gain authorization to carry out certain types of operations. Driven by this framework, the Joint Authorities for Rulemaking on Unmanned Systems (JARUS) released the Specific Operation Risk Assessment (SORA) methodology that guides the systematic risk assessment for UAS operations. However, existing work on SORA and its applications focuses mainly on single UAS operations, offering limited support for assuring operations conducted with multiple UAS and with autonomous features. Therefore, the work presented in this paper analyzes the application of SORA for a Multi-UAS airframe inspection (AFI) operation, that involves deploying multiple UAS with autonomous features inside an airport. We present the decision-making process of each SORA step and its application to a multiple UAS scenario. The results shows that the procedures and safety features included in the Multi-AFI operation such as workspace segmentation, the independent multi-UAS AFI crew proposed, and the mitigation actions provide confidence that the operation can be conducted safely and can receive a positive evaluation from the competent authorities. We also present our key findings from the application of SORA and discuss how it can be extended to better support multi-UAS operations. [less ▲]

Detailed reference viewed: 54 (8 UL)
Peer Reviewed
See detailAssessment of a textile portable exoskeleton for the upper limbs' flexion
Samper-Escudero, Jose Luis; Coloma Chacon, Sofia UL; Olivares Mendez, Miguel Angel UL et al

Scientific Conference (2021)

Flexible exoskeletons are lightweight robots that surround the user’s anatomy to assist or oppose motion. Their structure is made of light and flexible materials, like fabrics, so the forces created by ... [more ▼]

Flexible exoskeletons are lightweight robots that surround the user’s anatomy to assist or oppose motion. Their structure is made of light and flexible materials, like fabrics, so the forces created by the robot are directly transferred to the user’s musculoskeletal system. Exosuits are thus sensitive to the sliding of the actuation, textile perturbations and improper fitting to the user. LUXBIT is a cable-driven flexible exoskeleton that combines fabrics and sewing patterns to promote its anatomical adaption. The exoskeleton is intended for bimanual assistance of daily tasks and long-term usage. To this end, the system reduces the pressures applied to the user and the misalignment of the actuation by stacking textile patches. The patches enhance the functioning of the base garment and promote the transference of the assistance forces. Additionally, LUXBIT has a compact actuation with deformable components to prevent the user movements from being restricted. The exoskeleton is portable by using an enhanced textile backpack. This paper shows the exoskeleton’s benefits for trajectory and muscle activity during the flexion of the shoulder and the elbow. [less ▲]

Detailed reference viewed: 47 (2 UL)
Full Text
Peer Reviewed
See detailLow-light image enhancement of permanently shadowed lunar regions with physics-based machine learning
Moseley, Ben; Bickel, Valentin; Lopez-Francos, Ignacio et al

in Low-light image enhancement of permanently shadowed lunar regions with physics-based machine learning (2020, December)

Finding water(-ice) on the Moon is key to enabling a sustainable human presence on the Moon and beyond. There is evidence that water-ice is abundant in and around the Moon’s Permanently Shadowed Regions ... [more ▼]

Finding water(-ice) on the Moon is key to enabling a sustainable human presence on the Moon and beyond. There is evidence that water-ice is abundant in and around the Moon’s Permanently Shadowed Regions (PSRs), however, direct visual detection has not yet been possible. Surface ice or related physical features could potentially be directly detected from high-resolution optical imagery, but, due to the extremely low-light conditions in these areas, high levels of sensor and photon noise make this very challenging. In this work we generate high-resolution, low-noise optical images over lunar PSRs by using two physics-based deep neural networks to model and remove CCD-related and photon noise in existing low-light optical imagery, potentially paving the way for a direct water-ice detection method. [less ▲]

Detailed reference viewed: 204 (26 UL)
Full Text
Peer Reviewed
See detailTESTING ENVIRONMENTS FOR LUNAR SURFACE PERCEPTION SYSTEMS; COMBINING INDOOR FACILITIES, VIRTUAL ENVIRONMENTS AND ANALOGUE FIELD TESTS.
Ludivig, Philippe UL; Olivares Mendez, Miguel Angel UL; Calzada Diaz, Abigail et al

Scientific Conference (2020, October 21)

This paper describes the different approaches which can be used to test vision systems for operations on robotic lunar surface missions. We investigate validating systems in virtual environments, lab ... [more ▼]

This paper describes the different approaches which can be used to test vision systems for operations on robotic lunar surface missions. We investigate validating systems in virtual environments, lab environments and analogue outdoor environments and demonstrate that a combination of all three approach-es is needed to sufficiently test systems for the lunar surface. [less ▲]

Detailed reference viewed: 62 (7 UL)
Full Text
Peer Reviewed
See detailBUILDING A PIECE OF THE MOON: CONSTRUCTION OF TWO INDOOR LUNAR ANALOGUE ENVIRONMENTS
Ludivig, Philippe UL; Calzada-Diaz, Abigail; Olivares Mendez, Miguel Angel UL et al

in Proceedings of the 71st International Astronautical Congress 2020 (2020, October 12)

Developing and testing autonomous systems to ensure that they work reliably on the moon is a difficult task, as testing on location is not an option. Instead, engineers rely on simulations, testing ... [more ▼]

Developing and testing autonomous systems to ensure that they work reliably on the moon is a difficult task, as testing on location is not an option. Instead, engineers rely on simulations, testing facilities and outdoor lunar analogues. Due to the lack of lunar analogue testing facilities in Europe, ispace Europe and the University of Luxembourg have teamed up to build two of these facilities with the goal of designing new vision-based navigation systems. These systems will enable autonomous long-range traverses for lunar rovers. These two facilities have a surface area of 64 and 77 square meters, respectively. Regarding the type of testing needed for vision-based systems, the optical fidelity of the environment has been considered as the most important factor. Thus, different types of Basalt have been used for the two facilities to create a larger number of possible landscapes, such as craters, hills, rocky areas and smooth planar surfaces. Regolith simulant was also considered but, due to the health restrictions and the cost factor, basalt was selected instead. As a result, this has allowed for larger testing areas. The illumination setup has been designed to simulate the highland regions of the Moon, with a single light source positioned low above the horizon, casting long shadows over the entire area. To mitigate problems with feature detection algorithms picking up features at the edge of the facility, the walls have been painted black. This also produces high contrast shadows, which is exactly what makes vision-based navigation challenging in the polar regions. The outcome of this research is a set of lessons learned which will enable other researchers to replicate similar facilities and to reproduce the same fidelity in indoor testing for future vision-based navigation systems. [less ▲]

Detailed reference viewed: 124 (24 UL)
Full Text
Peer Reviewed
See detailTrajectory Tracking for Aerial Robots: an Optimization-Based Planning and Control Approach
Sanchez Lopez, Jose Luis UL; Castillo Lopez, Manuel UL; Olivares Mendez, Miguel Angel UL et al

in Journal of Intelligent and Robotic Systems (2020), 100

In this work, we present an optimization-based trajectory tracking solution for multirotor aerial robots given a geometrically feasible path. A trajectory planner generates a minimum-time kinematically ... [more ▼]

In this work, we present an optimization-based trajectory tracking solution for multirotor aerial robots given a geometrically feasible path. A trajectory planner generates a minimum-time kinematically and dynamically feasible trajectory that includes not only standard restrictions such as continuity and limits on the trajectory, constraints in the waypoints, and maximum distance between the planned trajectory and the given path, but also restrictions in the actuators of the aerial robot based on its dynamic model, guaranteeing that the planned trajectory is achievable. Our novel compact multi-phase trajectory definition, as a set of two different kinds of polynomials, provides a higher semantic encoding of the trajectory, which allows calculating an optimal solution but following a predefined simple profile. A Model Predictive Controller ensures that the planned trajectory is tracked by the aerial robot with the smallest deviation. Its novel formulation takes as inputs all the magnitudes of the planned trajectory (i.e. position and heading, velocity, and acceleration) to generate the control commands, demonstrating through in-lab real flights an improvement of the tracking performance when compared with a controller that only uses the planned position and heading. To support our optimization-based solution, we discuss the most commonly used representations of orientations, as well as both the difference as well as the scalar error between two rotations, in both tridimensional and bidimensional spaces $SO(3)$ and $SO(2)$. We demonstrate that quaternions and error-quaternions have some advantages when compared to other formulations. [less ▲]

Detailed reference viewed: 158 (14 UL)
Full Text
Peer Reviewed
See detailA Real-Time Approach for Chance-Constrained Motion Planning with Dynamic Obstacles
Castillo Lopez, Manuel UL; Ludivig, Philippe; Sajadi-Alamdari, Seyed Amin et al

in IEEE Robotics and Automation Letters (2020), 5(2), 3620-3625

Uncertain dynamic obstacles, such as pedestrians or vehicles, pose a major challenge for optimal robot navigation with safety guarantees. Previous work on motion planning has followed two main strategies ... [more ▼]

Uncertain dynamic obstacles, such as pedestrians or vehicles, pose a major challenge for optimal robot navigation with safety guarantees. Previous work on motion planning has followed two main strategies to provide a safe bound on an obstacle's space: a polyhedron, such as a cuboid, or a nonlinear differentiable surface, such as an ellipsoid. The former approach relies on disjunctive programming, which has a relatively high computational cost that grows exponentially with the number of obstacles. The latter approach needs to be linearized locally to find a tractable evaluation of the chance constraints, which dramatically reduces the remaining free space and leads to over-conservative trajectories or even unfeasibility. In this work, we present a hybrid approach that eludes the pitfalls of both strategies while maintaining the original safety guarantees. The key idea consists in obtaining a safe differentiable approximation for the disjunctive chance constraints bounding the obstacles. The resulting nonlinear optimization problem is free of chance constraint linearization and disjunctive programming, and therefore, it can be efficiently solved to meet fast real-time requirements with multiple obstacles. We validate our approach through mathematical proof, simulation and real experiments with an aerial robot using nonlinear model predictive control to avoid pedestrians. [less ▲]

Detailed reference viewed: 304 (33 UL)
Full Text
Peer Reviewed
See detailA case study on the impact of masking moving objects on the camera pose regression with CNNs
Cimarelli, Claudio UL; Cazzato, Dario UL; Olivares Mendez, Miguel Angel UL et al

in 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) (2019, November 25)

Robot self-localization is essential for operating autonomously in open environments. When cameras are the main source of information for retrieving the pose, numerous challenges are posed by the presence ... [more ▼]

Robot self-localization is essential for operating autonomously in open environments. When cameras are the main source of information for retrieving the pose, numerous challenges are posed by the presence of dynamic objects, due to occlusion and continuous changes in the appearance. Recent research on global localization methods focused on using a single (or multiple) Convolutional Neural Network (CNN) to estimate the 6 Degrees of Freedom (6-DoF) pose directly from a monocular camera image. In contrast with the classical approaches using engineered feature detector, CNNs are usually more robust to environmental changes in light and to occlusions in outdoor scenarios. This paper contains an attempt to empirically demonstrate the ability of CNNs to ignore dynamic elements, such as pedestrians or cars, through learning. For this purpose, we pre-process a dataset for pose localization with an object segmentation network, masking potentially moving objects. Hence, we compare the pose regression CNN trained and/or tested on the set of masked images and the original one. Experimental results show that the performances of the two training approaches are similar, with a slight reduction of the error when hiding occluding objects from the views. [less ▲]

Detailed reference viewed: 70 (9 UL)
Full Text
Peer Reviewed
See detailVision-Based Aircraft Pose Estimation for UAVs Autonomous Inspection without Fiducial Markers
Cazzato, Dario UL; Olivares Mendez, Miguel Angel UL; Sanchez Lopez, Jose Luis UL et al

in IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society (2019, October)

The reliability of aircraft inspection is of paramountimportance to safety of flights. Continuing airworthiness of air-craft structures is largely based upon the visual detection of smalldefects made by ... [more ▼]

The reliability of aircraft inspection is of paramountimportance to safety of flights. Continuing airworthiness of air-craft structures is largely based upon the visual detection of smalldefects made by trained inspection personnel with expensive,critical and time consuming tasks. At this aim, Unmanned AerialVehicles (UAVs) can be used for autonomous inspections, aslong as it is possible to localize the target while flying aroundit and correct the position. This work proposes a solution todetect the airplane pose with regards to the UAVs position whileflying autonomously around the airframe at close range forvisual inspection tasks. The system works by processing imagescoming from an RGB camera mounted on board, comparingincoming frames with a database of natural landmarks whoseposition on the airframe surface is known. The solution has beentested in real UAV flight scenarios, showing its effectiveness inlocalizing the pose with high precision. The advantages of theproposed methods are of industrial interest since we remove manyconstraint that are present in the state of the art solutions. [less ▲]

Detailed reference viewed: 103 (8 UL)
Full Text
Peer Reviewed
See detailFaster Visual-Based Localization with Mobile-PoseNet
Cimarelli, Claudio UL; Cazzato, Dario UL; Olivares Mendez, Miguel Angel UL et al

in International Conference on Computer Analysis of Images and Patterns (2019, August 22)

Precise and robust localization is of fundamental importance for robots required to carry out autonomous tasks. Above all, in the case of Unmanned Aerial Vehicles (UAVs), efficiency and reliability are ... [more ▼]

Precise and robust localization is of fundamental importance for robots required to carry out autonomous tasks. Above all, in the case of Unmanned Aerial Vehicles (UAVs), efficiency and reliability are critical aspects in developing solutions for localization due to the limited computational capabilities, payload and power constraints. In this work, we leverage novel research in efficient deep neural architectures for the problem of 6 Degrees of Freedom (6-DoF) pose estimation from single RGB camera images. In particular, we introduce an efficient neural network to jointly regress the position and orientation of the camera with respect to the navigation environment. Experimental results show that the proposed network is capable of retaining similar results with respect to the most popular state of the art methods while being smaller and with lower latency, which are fundamental aspects for real-time robotics applications. [less ▲]

Detailed reference viewed: 118 (6 UL)
Full Text
Peer Reviewed
See detailReal-Time Human Head Imitation for Humanoid Robots
Cazzato, Dario UL; Cimarelli, Claudio UL; Sanchez Lopez, Jose Luis UL et al

in Proceedings of the 2019 3rd International Conference on Artificial Intelligence and Virtual Reality (2019, July)

The ability of the robots to imitate human movements has been an active research study since the dawn of the robotics. Obtaining a realistic imitation is essential in terms of perceived quality in human ... [more ▼]

The ability of the robots to imitate human movements has been an active research study since the dawn of the robotics. Obtaining a realistic imitation is essential in terms of perceived quality in human-robot interaction, but it is still a challenge due to the lack of effective mapping between human movements and the degrees of freedom of robotics systems. If high-level programming interfaces, software and simulation tools simplified robot programming, there is still a strong gap between robot control and natural user interfaces. In this paper, a system to reproduce on a robot the head movements of a user in the field of view of a consumer camera is presented. The system recognizes the presence of a user and its head pose in real-time by using a deep neural network, in order to extract head position angles and to command the robot head movements consequently, obtaining a realistic imitation. At the same time, the system represents a natural user interface to control the Aldebaran NAO and Pepper humanoid robots with the head movements, with applications in human-robot interaction. [less ▲]

Detailed reference viewed: 180 (15 UL)