![]() ![]() ; ; et al in Toxicological sciences : an official journal of the Society of Toxicology (2016), 149(1), 55-66 Long-term repeated-dose toxicity is mainly assessed in animals despite poor concordance of animal data with human toxicity. Nowadays advanced human in vitro systems, eg, metabolically competent HepaRG ... [more ▼] Long-term repeated-dose toxicity is mainly assessed in animals despite poor concordance of animal data with human toxicity. Nowadays advanced human in vitro systems, eg, metabolically competent HepaRG cells, are used for toxicity screening. Extrapolation of in vitro toxicity to in vivo effects is possible by reverse dosimetry using pharmacokinetic modeling. We assessed long-term repeated-dose toxicity of bosentan and valproic acid (VPA) in HepaRG cells under serum-free conditions. Upon 28-day exposure, the EC50 values for bosentan and VPA decreased by 21- and 33-fold, respectively. Using EC(10) as lowest threshold of toxicity in vitro, we estimated the oral equivalent doses for both test compounds using a simplified pharmacokinetic model for the extrapolation of in vitro toxicity to in vivo effect. The model predicts that bosentan is safe at the considered dose under the assumed conditions upon 4 weeks exposure. For VPA, hepatotoxicity is predicted for 4% and 47% of the virtual population at the maximum recommended daily dose after 3 and 4 weeks of exposure, respectively. We also investigated the changes in the central carbon metabolism of HepaRG cells exposed to orally bioavailable concentrations of both drugs. These concentrations are below the 28-day EC(10) and induce significant changes especially in glucose metabolism and urea production. These metabolic changes may have a pronounced impact in susceptible patients such as those with compromised liver function and urea cycle deficiency leading to idiosyncratic toxicity. We show that the combination of modeling based on in vitro repeated-dose data and metabolic changes allows the prediction of human relevant in vivo toxicity with mechanistic insights. [less ▲] Detailed reference viewed: 51 (2 UL)![]() ![]() ; ; et al in Toxicological sciences : an official journal of the Society of Toxicology (2012), 125(2), 595-606 Doxorubicin (DXR), an anticancer drug, is limited in its use due to severe cardiotoxic effects. These effects are partly caused by disturbed myocardial energy metabolism. We analyzed the effects of ... [more ▼] Doxorubicin (DXR), an anticancer drug, is limited in its use due to severe cardiotoxic effects. These effects are partly caused by disturbed myocardial energy metabolism. We analyzed the effects of therapeutically relevant but nontoxic DXR concentrations for their effects on metabolic fluxes, cell respiration, and intracellular ATP. (13)C isotope labeling studies using [U-(13)C(6)]glucose, [1,2-(13)C(2)]glucose, and [U-(13)C(5)]glutamine were carried out on HL-1 cardiomyocytes exposed to 0.01 and 0.02 muM DXR and compared with the untreated control. Metabolic fluxes were calculated by integrating production and uptake rates of extracellular metabolites (glucose, lactate, pyruvate, and amino acids) as well as (13)C-labeling in secreted lactate derived from the respective (13)C-labeled substrates into a metabolic network model. The investigated DXR concentrations (0.01 and 0.02 muM) had no effect on cell viability and beating of the HL-1 cardiomyocytes. Glycolytic fluxes were significantly reduced in treated cells at tested DXR concentrations. Oxidative metabolism was significantly increased (higher glucose oxidation, oxidative decarboxylation, TCA cycle rates, and respiration) suggesting a more efficient use of glucose carbon. These changes were accompanied by decrease of intracellular ATP. We conclude that DXR in nanomolar range significantly changes central carbon metabolism in HL-1 cardiomyocytes, which results in a higher coupling of glycolysis and TCA cycle. The myocytes probably try to compensate for decreased intracellular ATP, which in turn may be the result of a loss of NADH electrons via either formation of reactive oxygen species or electron shunting. [less ▲] Detailed reference viewed: 94 (0 UL)![]() ![]() ; Noor, Fozia ![]() in Journal of biotechnology (2011), 155(3), 299-307 Verapamil has been shown to inhibit glucose transport in several cell types. However, the consequences of this inhibition on central metabolism are not well known. In this study we focused on verapamil ... [more ▼] Verapamil has been shown to inhibit glucose transport in several cell types. However, the consequences of this inhibition on central metabolism are not well known. In this study we focused on verapamil induced changes in metabolic fluxes in a murine atrial cell line (HL-1 cells). These cells were adapted to serum free conditions and incubated with 4 muM verapamil and [U-(1)(3)C(5)] glutamine. Specific extracellular metabolite uptake/production rates together with mass isotopomer fractions in alanine and glutamate were implemented into a metabolic network model to calculate metabolic flux distributions in the central metabolism. Verapamil decreased specific glucose consumption rate and glycolytic activity by 60%. Although the HL-1 cells show Warburg effect with high lactate production, verapamil treated cells completely stopped lactate production after 24 h while maintaining growth comparable to the untreated cells. Calculated fluxes in TCA cycle reactions as well as NADH/FADH(2) production rates were similar in both treated and untreated cells. This was confirmed by measurement of cell respiration. Reduction of lactate production seems to be the consequence of decreased glucose uptake due to verapamil. In case of tumors, this may have two fold effects; firstly depriving cancer cells of substrate for anaerobic glycolysis on which their growth is dependent; secondly changing pH of the tumor environment, as lactate secretion keeps the pH acidic and facilitates tumor growth. The results shown in this study may partly explain recent observations in which verapamil has been proposed to be a potential anticancer agent. Moreover, in biotechnological production using cell lines, verapamil may be used to reduce glucose uptake and lactate secretion thereby increasing protein production without introduction of genetic modifications and application of more complicated fed-batch processes. [less ▲] Detailed reference viewed: 100 (0 UL)![]() ![]() ; Noor, Fozia ![]() in Toxicology and applied pharmacology (2009), 240(3), 327-36 Commonly used cytotoxicity assays assess the toxicity of a compound by measuring certain parameters which directly or indirectly correlate to the viability of the cells. However, the effects of a given ... [more ▼] Commonly used cytotoxicity assays assess the toxicity of a compound by measuring certain parameters which directly or indirectly correlate to the viability of the cells. However, the effects of a given compound at concentrations considerably below EC(50) values are usually not evaluated. These subtoxic effects are difficult to identify but may eventually cause severe and costly long term problems such as idiosyncratic hepatotoxicity. We determined the toxicity of three hepatotoxic compounds, namely amiodarone, diclofenac and tacrine on the human hepatoma cell line Hep G2 using an online kinetic respiration assay and analysed the effects of subtoxic concentrations of these drugs on the cellular metabolism by using metabolic flux analysis. Several changes in the metabolism could be detected upon exposure to subtoxic concentrations of the test compounds. Upon exposure to diclofenac and tacrine an increase in the TCA-cycle activity was observed which could be a signature of an uncoupling of the oxidative phosphorylation. The results indicate that metabolic flux analysis could serve as an invaluable novel tool for the investigation of the effects of drugs. The described methodology enables tracking the toxicity of compounds dynamically using the respiration assay in a range of concentrations and the metabolic flux analysis permits interesting insights into the changes in the central metabolism of the cell upon exposure to drugs. [less ▲] Detailed reference viewed: 100 (0 UL)![]() ![]() Noor, Fozia ![]() in Toxicology and applied pharmacology (2009), 237(2), 221-31 Efficient and accurate safety assessment of compounds is extremely important in the preclinical development of drugs especially when hepatotoxicity is in question. Multiparameter and time resolved assays ... [more ▼] Efficient and accurate safety assessment of compounds is extremely important in the preclinical development of drugs especially when hepatotoxicity is in question. Multiparameter and time resolved assays are expected to greatly improve the prediction of toxicity by assessing complex mechanisms of toxicity. An integrated approach is presented in which Hep G2 cells and primary rat hepatocytes are compared in frequently used cytotoxicity assays for parent compound toxicity. The interassay variability was determined. The cytotoxicity assays were also compared with a reliable alternative time resolved respirometric assay. The set of training compounds consisted of well known hepatotoxins; amiodarone, carbamazepine, clozapine, diclofenac, tacrine, troglitazone and verapamil. The sensitivity of both cell systems in each tested assay was determined. Results show that careful selection of assay parameters and inclusion of a kinetic time resolved assay improves prediction for non-metabolism mediated toxicity using Hep G2 cells as indicated by a sensitivity ratio of 1. The drugs with EC(50) values 100 microM or lower were considered toxic. The difference in the sensitivity of the two cell systems to carbamazepine which causes toxicity via reactive metabolites emphasizes the importance of human cell based in-vitro assays. Using the described system, primary rat hepatocytes do not offer advantage over the Hep G2 cells in parent compound toxicity evaluation. Moreover, respiration method is non invasive, highly sensitive and allows following the time course of toxicity. Respiration assay could serve as early indicator of changes that subsequently lead to toxicity. [less ▲] Detailed reference viewed: 86 (0 UL) |
||