References of "Nijsure, Yogesh 50022300"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailRandom Phase Center Motion Technique for Enhanced Angle-Doppler Discrimination Using MIMO Radars
Hammes, Christian UL; Shankar, Bhavani UL; Nijsure, Yogesh UL et al

in European Signal Processing Conference (EUSIPCO) 2017 (2017, August)

A random Phase Center Motion (PCM) technique is presented in this paper, based on Frequency Modulated Continuous Wave (FMCW) radar, in order to suppress the angle- Doppler coupling in Time Division ... [more ▼]

A random Phase Center Motion (PCM) technique is presented in this paper, based on Frequency Modulated Continuous Wave (FMCW) radar, in order to suppress the angle- Doppler coupling in Time Division Multiplex (TDM) Multiple- Input-Multiple-Output (MIMO) radar when employing sparse array structures. The presented approach exploits an apparently moving transmit platform or PCM due to spatio-temporal transmit array modulation. In particular, the work considers a framework utilizing a random PCM trajectory. The statistical characterization of the random PCM trajectory is devised, such that the PCM and the target motion coupling is minimal, while the angular resolution is increased by enabling the virtual MIMO concept. In more details, this paper discusses sidelobe suppression approaches within the angle-Doppler Ambiguity Function (AF) by introducing a phase center probability density function within the array. This allows for enhanced discrimination of multiple targets. Simulation results demonstrate the suppression angle- Doppler coupling by more than 30 dB, even though spatiotemporal transmit array modulation is done across chirps which leads usually to strong angle-Doppler coupling. [less ▲]

Detailed reference viewed: 207 (17 UL)
Full Text
Peer Reviewed
See detailDiscrimination of Angle-Doppler Signatures using Arbitrary Phase Center Motion for MIMO Radars
Hammes, Christian UL; Nijsure, Yogesh UL; Shankar, Bhavani UL et al

in IEEE Radar Conf 2017 (2017, May)

A novel Phase Center Motion (PCM) based technique for discriminating angle-Doppler signatures within Multiple-Input-Multiple-Output (MIMO) radars using Frequency Modulated Continuous Wave (FMCW) has been ... [more ▼]

A novel Phase Center Motion (PCM) based technique for discriminating angle-Doppler signatures within Multiple-Input-Multiple-Output (MIMO) radars using Frequency Modulated Continuous Wave (FMCW) has been explored in this work. The PCM technique induces angle dependent Doppler shifts in the back-scattered signal, wherein a modified Doppler post processing for FMCW leads to joint angle-Doppler processing. Specifically, we intend to design unique spatialtemporal motion of the phase center on each individual MIMO radar channel in an effort to synthesize nearly orthogonal angle-Doppler signatures. Subsequently, we also develop a MIMO radar receiver design, which would be capable of discriminating between these induced angle-Doppler signatures. The asymptotic investigation provides a Bessel function characteristic. Simulation results demonstrate a significant side-lobe suppression of 8:5 dB for an individual PCM trajectory and 7 dB over distinct PCM trajectories, in an attempt towards realization of nearly orthogonal MIMO radar channels. [less ▲]

Detailed reference viewed: 245 (20 UL)