References of "Nguyen, Viet Ha 50009108"
     in
Bookmark and Share    
See detailVerringerung des Temperatureinflusses bei der Überwachung von Brücken am Beispiel von Messdaten aus Luxemburg
Kebig, Tanja UL; Dakhili, Khatereh UL; Nguyen, Viet Ha UL et al

Conference given outside the academic context (2021)

A rising number of concrete bridges are showing increasing damage due to corrosion and fatigue. In addition to the regular standard visual inspection, the bridge’s condition can also be recorded using ... [more ▼]

A rising number of concrete bridges are showing increasing damage due to corrosion and fatigue. In addition to the regular standard visual inspection, the bridge’s condition can also be recorded using additional tests with repeated static loading and/or dynamic tests. To determine any damage to a structure and to check its structural stability, it is crucial to know the exact system properties of the bridge in its undamaged reference state. The system behavior is influenced by damage and bearing conditions and environmental influences, such as the structure’s temperature. The influence of temperature can even cause larger changes in the measured quantities (bending line or modal parameters) than real damage. Therefore, temperature effects should be compensated before any condition analysis. The present work aims to demonstrate the influence of different bearing types and temperature on a real bridge beam. For this purpose, various static and dynamic tests were performed in the undamaged reference state. [less ▲]

Detailed reference viewed: 161 (32 UL)
Full Text
Peer Reviewed
See detailRepeatability and precision of different static deflection measurements on a real bridge-part under outdoor conditions in view of damage detection
Kebig, Tanja UL; Nguyen, Viet Ha UL; Bender, Michél et al

in Cunha, A.; Caetano, E. (Eds.) Proceedings of the 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure, SHMII 10 (2021, July)

A large number of concrete bridges show increasing damage due to corrosion and fatigue. The traditional visual inspection and subsequent assessment of concrete bridges is carried out regularly by an ... [more ▼]

A large number of concrete bridges show increasing damage due to corrosion and fatigue. The traditional visual inspection and subsequent assessment of concrete bridges is carried out regularly by an experienced engineer. This type of inspection can be time-consuming, costly and leading to errors. Hence, there is a great interest in complementary, alternative and easy-to-implement methods for condition monitoring of bridges. The University of Luxembourg tested different approaches on a part of a real bridge. Various tests were performed in the healthy reference state, e.g. loading tests with a movable test load according to today’s standards. The measurements in the reference state were repeated several times under outdoor conditions to monitor and document the real temperature influence. Displacement transducers were set up in the vertical and horizontal directions. Simultaneously, a new approach was used for determining the deflection with a laser-based system, that measured the displacements in the bridge’s longitudinal direction by an oblique reflector panel under a well-defined angle. The data gained from the laser-based measurement system were compared to the data from classical displacement transducers. In general, the comparison of the two measuring systems shows quite similar results. [less ▲]

Detailed reference viewed: 118 (10 UL)
Full Text
Peer Reviewed
See detailNeuere Methoden zur Identifikation und Lokalisierung von Schäden an vorgespannten Betonbrücken
Maas, Stefan UL; Nguyen, Viet Ha UL; Kebig, Tanja UL

in Bischoff, Manfred; von Scheven, Malte; Oesterle, Bernd (Eds.) Baustatik-Baupraxis 14 (2020, March 23)

Zuerst wird ein rein statistischer Schadensindikator basierend auf der Hauptkomponentenanalyse vorgestellt. Wichtig sind Referenzmessungen im ungeschädigten Zustand, um Veränderungen zu identifizieren ... [more ▼]

Zuerst wird ein rein statistischer Schadensindikator basierend auf der Hauptkomponentenanalyse vorgestellt. Wichtig sind Referenzmessungen im ungeschädigten Zustand, um Veränderungen zu identifizieren. Bevor die Messdaten mit den Rechenmodellen kombiniert werden, müssen Temperatureffekte kompensiert werden, um dann die Schäden zu erkennen und zu lokalisieren. Ein „Model-Updating“ Prozess eines speziellen Finite-Elemente- Modells passt die Steifigkeitsmatrix an die gemessenen Eigenfrequenzen oder an die progressive Absenkung unter Eigengewicht an. [less ▲]

Detailed reference viewed: 148 (30 UL)
Full Text
Peer Reviewed
See detailComparison of different excitationand data sampling-methods in structural health monitoring
Maas, Stefan UL; Nguyen, Viet Ha UL; Kebig, Tanja UL et al

in Civil Engineering Design (2019), 1

Structural Health Monitoring with analysis of dynamic characteristics intends to detect stiffness changes caused by damage. It can be performed by vibrational tests resulting to modal parameters, that is ... [more ▼]

Structural Health Monitoring with analysis of dynamic characteristics intends to detect stiffness changes caused by damage. It can be performed by vibrational tests resulting to modal parameters, that is, eigenfrequencies, damping, modeshapes, or modal masses. Those parameters are themselves informational and even allow often deducing the stiffness matrix. Based on that, it is possible to identify and to localize changes in the stiffness matrix due to damage, that is, localization and quantification of damage. However, changing test conditions, like ambient temperature or excitation force or existing nonlinearities of concrete, show important influence on damage indicators and hence need compensation prior to damage detection. Considering this background, this article focuses on comparing ambient excitation to forced excitation including appropriate exciters. Furthermore, continuous monitoring is discussed vs discrete testing in distinct time-intervals. The intention of the comparison is to give an overview, that is, helpful for choosing appropriate measurement technique for the sake of correct damage detection subsequently. [less ▲]

Detailed reference viewed: 203 (29 UL)
Full Text
Peer Reviewed
See detailBRIDGE MONITORING WITH HARMONIC EXCITATION AND PRINCIPAL COMPONENT ANALYSIS
Nguyen, Viet Ha UL; Golinval, Jean-Claude; Maas, Stefan UL

in The Baltic Journal of Road and Bridge Engineering (2019)

Principal Component Analysis is used for damage detection in structures excited by harmonic forces. Time responses are directly analysed by Singular Value Decomposition to deduct two dominant Proper ... [more ▼]

Principal Component Analysis is used for damage detection in structures excited by harmonic forces. Time responses are directly analysed by Singular Value Decomposition to deduct two dominant Proper Orthogonal Values corresponding to two Proper Orthogonal Modes. Damage index is defined by the concept of subspace angle that a subspace is built from the two Proper Orthogonal Modes. A subspace angle reflects the coherence between two different structural health states. An example is given through the application on a part of a real prestressed concrete bridge in Luxembourg where different damage states were created by cutting a number of prestressed tendons in four scenarios with increasing levels. Results are better by using excitation frequency close to an eigenfrequency of the structure. The technique is convenient for practical application in operational bridge structures. [less ▲]

Detailed reference viewed: 185 (17 UL)
Full Text
See detailModeling of a prestressed concrete bridge with 3D finite elements for structural health monitoring using model updating techniques
Schommer, Sebastian UL; Kebig, Tanja UL; Nguyen, Viet Ha UL et al

in ISMA2018 International Conference on Noise and Vibration Engineering (2018)

This paper presents a linear finite element model for a prestressed concrete beam, which was part of a real bridge. Static and dynamic tests were carried out and compared to the numerical simulation ... [more ▼]

This paper presents a linear finite element model for a prestressed concrete beam, which was part of a real bridge. Static and dynamic tests were carried out and compared to the numerical simulation responses. A solid finite element model was created including the prestressed concrete beam, permanent dead load, two additional live loads and a shaker. A well planned finite element model is very important for later detection and localization of damage. Therefore, a mapped mesh was used to define so-called ‘slices’, which enables describing stiffness changes, e.g. damage. The model validation was performed by comparing simulated results to measured responses in the healthy state of the beam. After validation of the reference model, it is possible to modify the bending stiffness along the longitudinal axis of the beam by modifying Young’s moduli of different slices to adapt for the effect of damage. [less ▲]

Detailed reference viewed: 189 (21 UL)
Full Text
Peer Reviewed
See detailModel updating for structural health monitoring using static and dynamic measurements
Schommer, Sebastian UL; Nguyen, Viet Ha UL; Maas, Stefan UL et al

in Procedia Engineering (2017), 199

Structural health monitoring is tracking static or dynamic characteristics of a structure to identify and localize stiffness reductions for damage detection. Different damage indicators are used and any ... [more ▼]

Structural health monitoring is tracking static or dynamic characteristics of a structure to identify and localize stiffness reductions for damage detection. Different damage indicators are used and any indicator presents advantages and drawbacks. Hence the idea comes up to combine them in a model-updating procedure using a finite element model. In a first step, a model is fit to match the healthy reference state of the examined structure. Therefore it relies on minimizing a special objective function adding and weighting the differences between measured and calculated static and dynamic structural characteristics. For doing structural health monitoring the measurements are repeated in distinct time intervals and the finite element model is updated again, using the same objective function and minimization procedure. Damage can be identified and localized by highlighting reductions in the stiffness matrix of the model compared to the initial model. The efficiency of the method is illustrated by in-situ tests, where a single beam is examined that was part of a real prestressed concrete bridge. For static tests, 8 displacement transducers were disposed along the length of 40m, while the beam was mass-loaded and the deflection line is analyzed. Modal analysis was performed with swept sine excitation with constant force amplitude to identify eigenfrequencies and mode shapes. Stepwise artificial damage was provoked by cutting multiple prestressed tendons inside the concrete beam. A finite element model with a mapped mesh was created, allowing a variation of Young’s modulus in grouped sections. On real bridges temperature is neither homogenous nor constant over time, which often has a considerable influence on measured static and dynamic characteristics as the stiffness of asphalt and/or bearings can be affected. The proposed methods show their efficiency when temperature effects were excluded or compensated after measurement, which is a topic on its own and not discussed here. [less ▲]

Detailed reference viewed: 193 (30 UL)
Full Text
Peer Reviewed
See detailA Study of Temperature and Aging Effects on Eigenfrequencies of Concrete Bridges for Health Monitoring
Nguyen, Viet Ha UL; Mahowald, Jean UL; Schommer, Sebastian UL et al

in Engineering (2017), 9

This paper discusses the influence of environmental factors and of normal material aging on the eigenfrequencies of concrete bridges based on monitoring data registered during 4 years of a specific bridge ... [more ▼]

This paper discusses the influence of environmental factors and of normal material aging on the eigenfrequencies of concrete bridges based on monitoring data registered during 4 years of a specific bridge. It is a new composite steel-concrete bridge built in 2006 in Luxembourg. The measurements are analyzed and compared to literature data. The final objective is the use of real monitored eigenfrequencies for structural health monitoring and damage detection based on identification of stiffness losses in practical applications. Therefore, it is very important to identify and compensate for outdoor influences namely temperature, excitation force level and normal aging effects, like creep and shrinkage of concrete and their impact on material properties. The present paper aims at describing these effects in order to separate them from damage effects. It is shown that temperature change rates and temperature gradients within the bridge have an influence on the eigenfrequencies. Hence the key idea for assessment from the full database is to select only measurements with small temperature differences and slow temperature change rates. [less ▲]

Detailed reference viewed: 202 (25 UL)
Full Text
Peer Reviewed
See detailHealth Monitoring based on Dynamic Flexibility matrix: Theoretical Models versus in-situ Tests
Schommer, Sebastian UL; Mahowald, Jean; Nguyen, Viet Ha UL et al

in Engineering (2017), 09(02), 37-67

The paper focuses on damage detection of civil engineering structures and especially on concrete bridges. A method for structural health monitoring based on vibrational measurements is presented and ... [more ▼]

The paper focuses on damage detection of civil engineering structures and especially on concrete bridges. A method for structural health monitoring based on vibrational measurements is presented and discussed. Experimentally identified modal parameters (eigenfrequencies, mode shapes and modal masses) of bridge structures are used to calculate the inverse stiffness matrix, the so-called flexibility matrix. By monitoring of the stiffness matrix, damage can easily be detected, quantified and localized by tracking changes of its individual elements. However, based on dynamic field measurements, the acquisition of the flexibility matrix instead of the stiffness matrix is often the only choice and hence more relevant for practice. But the flexibility-based quantification and localisation of damage are often possible but more difficult, as it depends on the type of support and the location of the damage. These issues are discussed and synthetized, that is an originality of this paper and is believed useful for engineers in the damage detection of different bridge structures. First the theoretical background is briefly repeated prior to the illustration of the differences between stiffness and flexibility matrix on analytical and numerical examples. Then the flexibility-based detection is demonstrated on two true bridges with real-time measurement data and the results are promising. [less ▲]

Detailed reference viewed: 254 (48 UL)
Full Text
Peer Reviewed
See detailProgramming the material point method in Julia
Sinaie, Sina; Nguyen, Viet Ha UL; Nguyen, Chi Thanh et al

in Advances in Engineering Software (2017), 105

This article presents the implementation of the material point method (MPM) using Julia. Julia is an open source, multi-platform, high-level, high-performance dynamic programming language for technical ... [more ▼]

This article presents the implementation of the material point method (MPM) using Julia. Julia is an open source, multi-platform, high-level, high-performance dynamic programming language for technical computing, with syntax that is familiar to Matlab and Python programmers. MPM is a hybrid particle-grid approach that combines the advantages of Eulerian and Lagrangian methods and is suitable for complex solid mechanics problems involving contact, impact and large deformations. We will show that a Julia based MPM code, which is short, compact and readable and uses only Julia built in features, performs much better (with speed up of up to 8) than a similar Matlab based MPM code for large strain solid mechanics simulations. We share our experiences of implementing MPM in Julia and demonstrate that Julia is a very interesting platform for rapid development in the field of scientific computing. [less ▲]

Detailed reference viewed: 313 (3 UL)
Full Text
Peer Reviewed
See detailStatic load testing with temperature compensation for structural health monitoring of bridges
Nguyen, Viet Ha UL; Schommer, Sebastian UL; Maas, Stefan UL et al

in Engineering Structures (2016), 127(2016), 700-718

The paper presents a series of repeated static loading tests on a prestressed concrete beam, which was originally part of a real bridge and then subjected to stepwise artificial damage. The tests were ... [more ▼]

The paper presents a series of repeated static loading tests on a prestressed concrete beam, which was originally part of a real bridge and then subjected to stepwise artificial damage. The tests were done during a one-month period that four levels of damage were introduced by cutting tendons until visible cracking occurred. The deflection line was measured by means of several displacement sensors and the retrieved information is used in different ways for damage detection. At first, the sensor spacing requirement is analyzed with respect to measurement accuracy as well as necessary resolution for the numerical derivations of the deflection line to obtain the rotational angle and the curvature of the beam. These derived quantities may be used as damage indicators in addition to the deflection. Damage of concrete goes very often along with non-linear phenomena like cracking of concrete and plastic strain of reinforcement steel. These effects are discussed and their influence on the repeated loading tests as well the test procedure for condition monitoring is deployed. Progressive damage goes along with progressive sagging of the bridge due to gravity, which can also be used as damage indicator. Finally, the effect of varying outdoor temperatures are discussed and assessed. Though these effects can be reduced by choosing cloudy days without high temperature changes and without high solar irradiation, the outdoor temperature is never constant. Hence, a compensation algorithm is proposed which reflects the measured data according to a reference temperature. This compensation visibly improved the regularity of data. [less ▲]

Detailed reference viewed: 240 (39 UL)
Full Text
See detailDamage detection for bridge structures based on dynamic and static measurements
Nguyen, Viet Ha UL; Schommer, Sebastian UL; Zurbes, Arno et al

Scientific Conference (2016, March)

Some results of damage detection for real bridge structures are reported in the present paper based on both dynamic and static measurements. Dynamic analysis relates to the identification of modal ... [more ▼]

Some results of damage detection for real bridge structures are reported in the present paper based on both dynamic and static measurements. Dynamic analysis relates to the identification of modal parameters and deduced variables… The processing of static data is based on the analyses of deflection line and its derivatives, i.e. slope and curvature. Detection methods were applied in several real concrete bridges in Luxembourg. The results are encouraging and useful for Structural Health Monitoring in civil engineering structures. [less ▲]

Detailed reference viewed: 159 (17 UL)
Full Text
See detailStructural health monitoring based on static measurements with temperature compensation
Nguyen, Viet Ha UL; Schommer, Sebastian UL; Zürbes, Arno et al

in QUALITY SPECIFICATIONS FOR ROADWAY BRIDGES, STANDARDIZATION AT A EUROPEAN LEVEL (2016)

The paper presents the main results from static tests in a prestressed concrete beam taken out from a real bridge. The tests were achieved during about one month with several scenarios of damage that ... [more ▼]

The paper presents the main results from static tests in a prestressed concrete beam taken out from a real bridge. The tests were achieved during about one month with several scenarios of damage that loaded and unloaded states were monitored for each scenario. Damages in 4 levels were simulated by cutting prestressed tendons. There were 8 transducers distributed along the length’s beam to measure displacements. Deflection lines resulted from the static measurements from every state allow discovering the location of damages. Moreover, the calculation of slope and curvature lines leads also to very interesting issues for damage localization. [less ▲]

Detailed reference viewed: 162 (40 UL)
Full Text
Peer Reviewed
See detailModelling interfacial cracking with non-matching cohesive interface elements
Nguyen, Viet Ha UL; Nguyen, Chi Thanh; Bordas, Stéphane UL et al

in Computational Mechanics (2016), 58(5), 731-746

Interfacial cracking occurs in many engineering problems such as delamination in composite laminates, matrix/interface debonding in fibre reinforced composites etc. Computational modelling of these ... [more ▼]

Interfacial cracking occurs in many engineering problems such as delamination in composite laminates, matrix/interface debonding in fibre reinforced composites etc. Computational modelling of these interfacial cracks usually employs compatible or matching cohesive interface elements. In this paper, incompatible or non-matching cohesive interface elements are proposed for interfacial fracture mechanics problems. They allow non-matching finite element discretisations of the opposite crack faces thus lifting the constraint on the compatible discretisation of the domains sharing the interface. The formulation is based on a discontinuous Galerkin method and works with both initially elastic and rigid cohesive laws. The proposed formulation has the following advantages compared to classical interface elements: (i) non-matching discretisations of the domains and (ii) no high dummy stiffness. Two and three dimensional quasi-static fracture simulations are conducted to demonstrate the method. Our method not only simplifies the meshing process but also it requires less computational demands, compared with standard interface elements, for problems that involve materials/solids having a large mismatch in stiffnesses. [less ▲]

Detailed reference viewed: 143 (4 UL)
Full Text
Peer Reviewed
See detailSome remarks on the influence of temperature-variations, non-linearities, repeatability and ageing on modal-analysis for structural health monitoring of real bridges
Maas, Stefan UL; Schommer, Sebastian UL; Nguyen, Viet Ha UL et al

in MATEC Web of Conferences (2015, October 19), 24(Article No. 05006),

Structural Health Monitoring (SHM) intends to identify damage by changes of characteristics as for instance the modal parameters. The eigenfrequencies, mode-shapes and damping-values are either directly ... [more ▼]

Structural Health Monitoring (SHM) intends to identify damage by changes of characteristics as for instance the modal parameters. The eigenfrequencies, mode-shapes and damping-values are either directly used as damage indicators or the changes of derived parameters are analysed, such as e.g. flexibilities or updated finite element models. One common way is a ontinuous monitoring under environmental excitation forces, such as wind or traffic, i.e. the so-called output-only modal analysis. Alternatively, a forced measured external excitation in distinct time-intervals may be used for input-output modal analysis. Both methods are limited by the precision or the repeatability under real-life conditions at site. The paper will summarize everal field tests of artificially step by step damaged bridges prior to their final demolishment and it will show the changes of eigenfrequencies due to induced artificial damage. Additionally, some results of a monitoring campaign of a healthy bridge in Luxembourg are presented. Reinforced concrete shows non-linear behaviour in the sense that modal parameters depend on the excitation force amplitude, i.e. higher forces lead often to lower eigenfrequencies than smaller forces. Furthermore, the temperature of real bridges is neither constant in space nor in time, while for instance the stiffness of asphalt is strongly dependant on it. Finally, ageing as uch can also change a bridge’s stiffness and its modal parameters, e.g. because creep and hrinkage of concrete or ageing of elastomeric bearing pads influence their modulus of elasticity. These effects cannot be considered as damage, though they influence the measurement of modal parameters and hinder damage detection. [less ▲]

Detailed reference viewed: 286 (66 UL)
Full Text
Peer Reviewed
See detailDamage detection in bridge structures including environmental effects
Nguyen, Viet Ha UL; Mahowald, Jean UL; Golinval, Jean-Claude et al

in the Ninth International Conference on Structural Dynamics EURODYN 2014 (2014, July)

Damage identification for two real big bridges in Luxembourg is carried out in this paper. Vibration responses were captured from different types of excitation such as measurable and adjustable harmonic ... [more ▼]

Damage identification for two real big bridges in Luxembourg is carried out in this paper. Vibration responses were captured from different types of excitation such as measurable and adjustable harmonic swept sine excitation and hammer impact. Before, different analysis methods were applied to the data measured from these structures showing interesting results. However, some difficulties are faced, especially due to environmental influences (temperature and soil-behaviour variations) overlaid to the structural changes caused by damage. These environmental effects are investigated in detail in this work. First, the modal parameters are identified from the response data by means of Wavelet Transform. In the next step, they are stochastically collected and processed through Principal Component Analysis. Damage index is based on outlier analysis. [less ▲]

Detailed reference viewed: 177 (37 UL)
Full Text
Peer Reviewed
See detailA signal processing method to remove environmental effects for damage detection in bridge structures
Nguyen, Viet Ha UL; Mahowald, Jean UL; Maas, Stefan UL et al

Poster (2014, July)

This paper consists in damage diagnosis for several real bridges in Luxembourg. Before, different analysis methods were applied to the data measured from these structures showing interesting results ... [more ▼]

This paper consists in damage diagnosis for several real bridges in Luxembourg. Before, different analysis methods were applied to the data measured from these structures showing interesting results. However, some difficulties are faced, especially due to environmental influences (temperature and soil-behaviour variations) which overlaid the structural changes caused by damage or confuse damage levels. These environmental effects are investigated in detail and removed in this work through Principal Component Analysis. Damage index is based on outlier analysis [less ▲]

Detailed reference viewed: 194 (38 UL)
Full Text
Peer Reviewed
See detailSome conclusions from the measurements of temperatures and their gradients on eigenfrequencies of bridges
Mahowald, Jean UL; Maas, Stefan UL; Nguyen, Viet Ha UL et al

Scientific Conference (2014, June 30)

The ambient air temperature and solar radiation are affecting the soil and asphalts’ stiffness and hence the eigenfrequencies of a bridge. Very often eigenfrequencies are automatically determined by ... [more ▼]

The ambient air temperature and solar radiation are affecting the soil and asphalts’ stiffness and hence the eigenfrequencies of a bridge. Very often eigenfrequencies are automatically determined by special algorithms from structural response data generated by ambient excitation and measured by permanently installed sensors that is sometimes called “output only analysis” or “operating modal analysis”. Additionally the ambient air temperature is registered and finally the eigenfrequencies are analyzed versus the air temperature. The graph is normally a scatter diagram and each point is one measurement. In general the eigenfrequencies decrease with increasing temperature, whereas often linear regression is used to determine the line of best fit. But the slope of this straight line and the width of the scatter around the regression line differ from bridge to bridge. Especially this scatter field around the mean value at a determined temperature complicates the detection of damage, which is also often based on eigenfrequencies’ reduction. Hence the difficulty among others consists in separating damage from environmental effects. [less ▲]

Detailed reference viewed: 229 (33 UL)
Full Text
Peer Reviewed
See detailUse Of Time- And Frequency-Domain Approaches For Damage Detection In Civil Engineering Structures
Nguyen, Viet Ha UL; Mahowald, Jean UL; Maas, Stefan UL et al

in Shock and Vibration (2014), 2014

The aim of this paper is to apply both time- and frequency-domain-based approaches on real-life civil engineering structures and to assess their capability for damage detection. The methodology is based ... [more ▼]

The aim of this paper is to apply both time- and frequency-domain-based approaches on real-life civil engineering structures and to assess their capability for damage detection. The methodology is based on Principal Component Analysis. The first structure is the Champangshiehl Bridge located in Luxembourg. Several damage levels were intentionally created by cutting a growing number of prestressed tendons and vibration data were acquired by the University of Luxembourg for each damaged state. The second example consists in reinforced and prestressed concrete panels. Successive damages were introduced in the panels by loading heavy weights and by cutting steel wires. The illustrations show different consequences in damage identification by the considered techniques [less ▲]

Detailed reference viewed: 176 (14 UL)
Full Text
See detailProceedings of IMAC XXXII Dynamics of Coupled Structures
Nguyen, Viet Ha UL; Mahowald, Jean UL; Golinval, Jean-Claude et al

in Firkret, Necati Catbas (Ed.) Damage Detection in Civil Engineering Structure Considering Temperature Effect (2014, February)

This paper concerns damage identification of a bridge located in Luxembourg. Vibration responses were captured from measurable and adjustable harmonic swept sine excitation and hammer impact. Different ... [more ▼]

This paper concerns damage identification of a bridge located in Luxembourg. Vibration responses were captured from measurable and adjustable harmonic swept sine excitation and hammer impact. Different analysis methods were applied to the data measured from the structure showing interesting results. However, some difficulties arise, especially due to environmental influences (temperature and soil-behaviour variations) which overlay the structural changes caused by damage. These environmental effects are investigated in detail in this work. First, the modal parameters are identified from the response data. In the next step, they are statistically collected and processed through Principal Component Analysis (PCA) and Kernel PCA. Damage indexes are based on outlier analysis. [less ▲]

Detailed reference viewed: 122 (10 UL)