References of "Neyses, Ludwig 50002752"
     in
Bookmark and Share    
Full Text
See detailA physician who has crossed many frontiers and has changed direction a number of times 
Ozkan, Judith; Neyses, Ludwig UL

in European Heart Journal (2017), 38(37), 27992800

Detailed reference viewed: 139 (8 UL)
Full Text
Peer Reviewed
See detailSelective inhibition of plasma membrane calcium ATPase 4 improves angiogenesis and vascular reperfusion
Kurusamy, Sathishkumar; López-Maderuelo, Dolores; Little, Robert et al

in Journal of Molecular and Cellular Cardiology (2017), (109), 38-47

AIMS: Ischaemic cardiovascular disease is a major cause of morbidity and mortality worldwide. Despite promising results from pre-clinical animal models, VEGF-based strategies for therapeutic angiogenesis ... [more ▼]

AIMS: Ischaemic cardiovascular disease is a major cause of morbidity and mortality worldwide. Despite promising results from pre-clinical animal models, VEGF-based strategies for therapeutic angiogenesis have yet to achieve successful reperfusion of ischaemic tissues in patients. Failure to restore efficient VEGF activity in the ischaemic organ remains a major problem in current pro-angiogenic therapeutic approaches. Plasma membrane calcium ATPase 4 (PMCA4) negatively regulates VEGF-activated angiogenesis via inhibition of the calcineurin/NFAT signalling pathway. PMCA4 activity is inhibited by the small molecule aurintricarboxylic acid (ATA). We hypothesize that inhibition of PMCA4 with ATA might enhance VEGF-induced angiogenesis. METHODS AND RESULTS: We show that inhibition of PMCA4 with ATA in endothelial cells triggers a marked increase in VEGF-activated calcineurin/NFAT signalling that translates into a strong increase in endothelial cell motility and blood vessel formation. ATA enhances VEGF-induced calcineurin signalling by disrupting the interaction between PMCA4 and calcineurin at the endothelial-cell membrane. ATA concentrations at the nanomolar range, that efficiently inhibit PMCA4, had no deleterious effect on endothelial-cell viability or zebrafish embryonic development. However, high ATA concentrations at the micromolar level impaired endothelial cell viability and tubular morphogenesis, and were associated with toxicity in zebrafish embryos. In mice undergoing experimentally-induced hindlimb ischaemia, ATA treatment significantly increased the reperfusion of post-ischaemic limbs. CONCLUSIONS: Our study provides evidence for the therapeutic potential of targeting PMCA4 to improve VEGF-based pro-angiogenic interventions. This goal will require the development of refined, highly selective versions of ATA, or the identification of novel PMCA4 inhibitors. [less ▲]

Detailed reference viewed: 170 (2 UL)
Full Text
Peer Reviewed
See detailThe Plasma Membrane Calcium ATPases and Their Role as Major New Players in Human Disease.
Stafford, Nicholas; Wilson, Claire; Oceandy, Delvac et al

in Physiological Reviews (2017), 97(3), 1089-1125

The Ca2+ extrusion function of the four mammalian isoforms of the plasma membrane calcium ATPases (PMCAs) is well established. There is also ever-increasing detail known of their roles in global and local ... [more ▼]

The Ca2+ extrusion function of the four mammalian isoforms of the plasma membrane calcium ATPases (PMCAs) is well established. There is also ever-increasing detail known of their roles in global and local Ca2+ homeostasis and intracellular Ca2+ signaling in a wide variety of cell types and tissues. It is becoming clear that the spatiotemporal patterns of expression of the PMCAs and the fact that their abundances and relative expression levels vary from cell type to cell type both reflect and impact on their specific functions in these cells. Over recent years it has become increasingly apparent that these genes have potentially significant roles in human health and disease, with PMCAs1-4 being associated with cardiovascular diseases, deafness, autism, ataxia, adenoma, and malarial resistance. This review will bring together evidence of the variety of tissue-specific functions of PMCAs and will highlight the roles these genes play in regulating normal physiological functions and the considerable impact the genes have on human disease. [less ▲]

Detailed reference viewed: 162 (15 UL)
Full Text
Peer Reviewed
See detailThe Plasma Membrane Calcium ATPase 4 Signaling in Cardiac Fibroblasts Mediates Cardiomyocyte Hypertrophy
Neyses, Ludwig UL; Mohamed, TMA; Abou-Leisa, R et al

in Nature Communications (2016)

Detailed reference viewed: 172 (27 UL)
Full Text
Peer Reviewed
See detailEffect of renal artery revascularization upon cardiac structure and function in atherosclerotic renal artery stenosis: cardiac magnetic resonance sub-study of the ASTRAL trial.
Ritchie, James; Green, Darren; Chrysochou, Tina et al

in Nephrology Dialysis Transplantation (2016)

BACKGROUND: Cardiac abnormalities are frequent in patients with atherosclerotic renovascular disease (ARVD). The Angioplasty and Stenting for Renal Artery Lesions (ASTRAL) trial studied the effect of ... [more ▼]

BACKGROUND: Cardiac abnormalities are frequent in patients with atherosclerotic renovascular disease (ARVD). The Angioplasty and Stenting for Renal Artery Lesions (ASTRAL) trial studied the effect of percutaneous renal revascularization combined with medical therapy compared with medical therapy alone in 806 patients with ARVD. METHODS: This was a pre-specified sub-study of ASTRAL (clinical trials registration, current controlled trials number: ISRCTN59586944), designed to consider the effect of percutaneous renal artery angioplasty and stenting on change in cardiac structure and function, measured using cardiac magnetic resonance (CMR) imaging. Fifty-one patients were recruited from six selected ASTRAL centres. Forty-four completed the study (medical therapy n = 21; revascularization n = 23). Full analysis of CMR was possible in 40 patients (18 medical therapy and 22 revascularization). CMR measurements of left and right ventricular end systolic (LV and RVESV) and diastolic volume (LV and RVEDV), ejection fraction (LVEF) and mass (LVM) were made shortly after recruitment and before revascularization in the interventional group, and again after 12 months. Reporting was performed by CMR analysts blinded to randomization arm. RESULTS: Groups were well matched for mean age (70 versus 72 years), blood pressure (148/71 versus 143/74 mmHg), degree of renal artery stenosis (75 versus 75%) and comorbid conditions. In both randomized groups, improvements in cardiac structural parameters were seen at 12 months, but there were no significant differences between treatment groups. Median left ventricular changes between baseline and 12 months (medical versus revascularization) were LVEDV -1.9 versus -5.8 mL, P = 0.4; LVESV -2.1 versus 0.3 mL, P = 0.7; LVM -5.4 versus -6.3 g, P = 0.8; and LVEF -1.5 versus -0.8%, P = 0.7. Multivariate regression also found that randomized treatment assignment was not associated with degree of change in any of the CMR measurements. CONCLUSIONS: In this sub-study of the ASTRAL trial, renal revascularization did not offer additional benefit to cardiac structure or function in unselected patients with ARVD. [less ▲]

Detailed reference viewed: 145 (2 UL)
Full Text
Peer Reviewed
See detailRisk Related to Pre-Diabetes Mellitus and Diabetes Mellitus in Heart Failure With Reduced Ejection Fraction: Insights From Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure Trial.
Kristensen, Soren L.; Preiss, David; Jhund, Pardeep S. et al

in Circulation. Heart failure (2016), 9(1),

BACKGROUND: The prevalence of pre-diabetes mellitus and its consequences in patients with heart failure and reduced ejection fraction are not known. We investigated these in the Prospective Comparison of ... [more ▼]

BACKGROUND: The prevalence of pre-diabetes mellitus and its consequences in patients with heart failure and reduced ejection fraction are not known. We investigated these in the Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial. METHODS AND RESULTS: We examined clinical outcomes in 8399 patients with heart failure and reduced ejection fraction according to history of diabetes mellitus and glycemic status (baseline hemoglobin A1c [HbA1c]: < 6.0% [< 42 mmol/mol], 6.0%-6.4% [42-47 mmol/mol; pre-diabetes mellitus], and >/= 6.5% [>/= 48 mmol/mol; diabetes mellitus]), in Cox regression models adjusted for known predictors of poor outcome. Patients with a history of diabetes mellitus (n = 2907 [35%]) had a higher risk of the primary composite outcome of heart failure hospitalization or cardiovascular mortality compared with those without a history of diabetes mellitus: adjusted hazard ratio, 1.38; 95% confidence interval, 1.25 to 1.52; P < 0.001. HbA1c measurement showed that an additional 1106 (13% of total) patients had undiagnosed diabetes mellitus and 2103 (25%) had pre-diabetes mellitus. The hazard ratio for patients with undiagnosed diabetes mellitus (HbA1c, > 6.5%) and known diabetes mellitus compared with those with HbA1c < 6.0% was 1.39 (1.17-1.64); P < 0.001 and 1.64 (1.43-1.87); P < 0.001, respectively. Patients with pre-diabetes mellitus were also at higher risk (hazard ratio, 1.27 [1.10-1.47]; P < 0.001) compared with those with HbA1c < 6.0%. The benefit of LCZ696 (sacubitril/valsartan) compared with enalapril was consistent across the range of HbA1c in the trial. CONCLUSIONS: In patients with heart failure and reduced ejection fraction, dysglycemia is common and pre-diabetes mellitus is associated with a higher risk of adverse cardiovascular outcomes (compared with patients with no diabetes mellitus and HbA1c < 6.0%). LCZ696 was beneficial compared with enalapril, irrespective of glycemic status. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01035255. [less ▲]

Detailed reference viewed: 116 (3 UL)
Full Text
Peer Reviewed
See detailPlasma membrane calcium ATPases (PMCAs) as potential targets for the treatment of essential hypertension.
Little, Robert; Cartwright, Elizabeth J.; Neyses, Ludwig UL et al

in Pharmacology and Therapeutics (2016), 159

The incidence of hypertension, the major modifiable risk factor for cardiovascular disease, is increasing. Thus, there is a pressing need for the development of new and more effective strategies to ... [more ▼]

The incidence of hypertension, the major modifiable risk factor for cardiovascular disease, is increasing. Thus, there is a pressing need for the development of new and more effective strategies to prevent and treat hypertension. Development of these relies on a continued evolution of our understanding of the mechanisms which control blood pressure (BP). Resistance arteries are important in the regulation of total peripheral resistance and BP; changes in their structure and function are strongly associated with hypertension. Anti-hypertensives which both reduce BP and reverse changes in resistance arterial structure reduce cardiovascular risk more than therapies which reduce BP alone. Hence, identification of novel potential vascular targets which modify BP is important. Hypertension is a multifactorial disorder which may include a genetic component. Genome wide association studies have identified ATP2B1, encoding the calcium pump plasma membrane calcium ATPase 1 (PMCA1), as having a strong association with BP and hypertension. Knockdown or reduced PMCA1 expression in mice has confirmed a physiological role for PMCA1 in BP and resistance arterial regulation. Altered expression or inhibition of PMCA4 has also been shown to modulate these parameters. The mechanisms whereby PMCA1 and 4 can modulate vascular function remain to be fully elucidated but may involve regulation of intracellular calcium homeostasis and/or comprise a structural role. However, clear physiological links between PMCA and BP, coupled with experimental studies directly linking PMCA1 and 4 to changes in BP and arterial function, suggest that they may be important targets for the development of new pharmacological modulators of BP. [less ▲]

Detailed reference viewed: 146 (3 UL)
Full Text
Peer Reviewed
See detailDeletion of the intestinal plasma membrane calcium pump, isoform 1, Atp2b1, in mice is associated with decreased bone mineral density and impaired responsiveness to 1, 25-dihydroxyvitamin D3.
Ryan, Zachary C.; Craig, Theodore A.; Filoteo, Adelaida G. et al

in Biochemical and biophysical research communications (2015), 467(1), 152-6

The physiological importance of the intestinal plasma membrane calcium pump, isoform 1, (Pmca1, Atp2b1), in calcium absorption and homeostasis has not been previously demonstrated in vivo. Since global ... [more ▼]

The physiological importance of the intestinal plasma membrane calcium pump, isoform 1, (Pmca1, Atp2b1), in calcium absorption and homeostasis has not been previously demonstrated in vivo. Since global germ-line deletion of the Pmca1 in mice is associated with embryonic lethality, we selectively deleted the Pmca1 in intestinal absorptive cells. Mice with loxP sites flanking exon 2 of the Pmca1 gene (Pmca1(fl/fl)) were crossed with mice expressing Cre recombinase in the intestine under control of the villin promoter to give mice in which the Pmca1 had been deleted in the intestine (Pmca1(EKO) mice). Pmca1(EKO) mice were born at a reduced frequency and were small at the time of birth when compared to wild-type (Wt) littermates. At two months of age, Pmca1(EKO) mice fed a 0.81% calcium, 0.34% phosphorus, normal vitamin D diet had reduced whole body bone mineral density (P < 0.037), and reduced femoral bone mineral density (P < 0.015). There was a trend towards lower serum calcium and higher serum parathyroid hormone (PTH) and 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) concentrations in Pmca1(EKO) mice compared to Wt mice but the changes were not statistically significant. The urinary phosphorus/creatinine ratio was increased in Pmca1(EKO) mice (P < 0.004). Following the administration of 200 ng of 1alpha,25(OH)2D3 intraperitoneally to Wt mice, active intestinal calcium transport increased approximately 2-fold, whereas Pmca1(EKO) mice administered an equal amount of 1alpha,25(OH)2D3 failed to show an increase in active calcium transport. Deletion of the Pmca1 in the intestine is associated with reduced growth and bone mineralization, and a failure to up-regulate calcium absorption in response to 1alpha,25(OH)2D3. [less ▲]

Detailed reference viewed: 165 (3 UL)
Full Text
Peer Reviewed
See detailAngiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure.
Packer, Milton; McMurray, John J. V.; Desai, Akshay S. et al

in Circulation (2015), 131(1), 54-61

BACKGROUND: Clinical trials in heart failure have focused on the improvement in symptoms or decreases in the risk of death and other cardiovascular events. Little is known about the effect of drugs on the ... [more ▼]

BACKGROUND: Clinical trials in heart failure have focused on the improvement in symptoms or decreases in the risk of death and other cardiovascular events. Little is known about the effect of drugs on the risk of clinical deterioration in surviving patients. METHODS AND RESULTS: We compared the angiotensin-neprilysin inhibitor LCZ696 (400 mg daily) with the angiotensin-converting enzyme inhibitor enalapril (20 mg daily) in 8399 patients with heart failure and reduced ejection fraction in a double-blind trial. The analyses focused on prespecified measures of nonfatal clinical deterioration. In comparison with the enalapril group, fewer LCZ696-treated patients required intensification of medical treatment for heart failure (520 versus 604; hazard ratio, 0.84; 95% confidence interval, 0.74-0.94; P=0.003) or an emergency department visit for worsening heart failure (hazard ratio, 0.66; 95% confidence interval, 0.52-0.85; P=0.001). The patients in the LCZ696 group had 23% fewer hospitalizations for worsening heart failure (851 versus 1079; P<0.001) and were less likely to require intensive care (768 versus 879; 18% rate reduction, P=0.005), to receive intravenous positive inotropic agents (31% risk reduction, P<0.001), and to have implantation of a heart failure device or cardiac transplantation (22% risk reduction, P=0.07). The reduction in heart failure hospitalization with LCZ696 was evident within the first 30 days after randomization. Worsening of symptom scores in surviving patients was consistently more common in the enalapril group. LCZ696 led to an early and sustained reduction in biomarkers of myocardial wall stress and injury (N-terminal pro-B-type natriuretic peptide and troponin) versus enalapril. CONCLUSIONS: Angiotensin-neprilysin inhibition prevents the clinical progression of surviving patients with heart failure more effectively than angiotensin-converting enzyme inhibition. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01035255. [less ▲]

Detailed reference viewed: 212 (2 UL)
Full Text
Peer Reviewed
See detailMinimising radial injury: Prevention is better than cure
Mamas, M. A.; Fraser, D. G.; Ratib, K. et al

in EuroIntervention: Journal of EuroPCR in Collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology (2014), 10(7), 824-832

Transradial (TR) coronary intervention is associated with fewer access-site-related bleeding complications and is independently associated with a lower risk of mortality following PCI compared to ... [more ▼]

Transradial (TR) coronary intervention is associated with fewer access-site-related bleeding complications and is independently associated with a lower risk of mortality following PCI compared to procedures undertaken through the femoral route. However, recent studies that have undertaken imaging of the radial artery through the use of IVUS and OCT, as well as histological studies, suggest that TR cardiac catheterisation is associated with significant injury to the radial artery wall resulting in significant endothelial cell dysfunction. The vascular endothelium plays a central role in the regulation of vascular tone, angiogenesis and vascular remodelling through the release of vasoactive mediators in response to a variety of stimuli. Hence, trauma to the vascular endothelium and subsequent changes in endothelial cell function may contribute to patterns of injury such as intimal hyperplasia and radial artery occlusion observed following TR cardiac catheterisation. Such injury patterns to the radial artery following TR procedures may limit the success and future utility of the TR approach. Minimisation of radial artery injury should be a key procedural component of procedures undertaken through the transradial approach. © 2014, EuroPCR. All rights reserved. [less ▲]

Detailed reference viewed: 142 (2 UL)
Full Text
Peer Reviewed
See detailAngiotensin-neprilysin inhibition versus enalapril in heart failure.
McMurray, John J. V.; Packer, Milton; Desai, Akshay S. et al

in The New England journal of medicine (2014), 371(11), 993-1004

BACKGROUND: We compared the angiotensin receptor-neprilysin inhibitor LCZ696 with enalapril in patients who had heart failure with a reduced ejection fraction. In previous studies, enalapril improved ... [more ▼]

BACKGROUND: We compared the angiotensin receptor-neprilysin inhibitor LCZ696 with enalapril in patients who had heart failure with a reduced ejection fraction. In previous studies, enalapril improved survival in such patients. METHODS: In this double-blind trial, we randomly assigned 8442 patients with class II, III, or IV heart failure and an ejection fraction of 40% or less to receive either LCZ696 (at a dose of 200 mg twice daily) or enalapril (at a dose of 10 mg twice daily), in addition to recommended therapy. The primary outcome was a composite of death from cardiovascular causes or hospitalization for heart failure, but the trial was designed to detect a difference in the rates of death from cardiovascular causes. RESULTS: The trial was stopped early, according to prespecified rules, after a median follow-up of 27 months, because the boundary for an overwhelming benefit with LCZ696 had been crossed. At the time of study closure, the primary outcome had occurred in 914 patients (21.8%) in the LCZ696 group and 1117 patients (26.5%) in the enalapril group (hazard ratio in the LCZ696 group, 0.80; 95% confidence interval [CI], 0.73 to 0.87; P<0.001). A total of 711 patients (17.0%) receiving LCZ696 and 835 patients (19.8%) receiving enalapril died (hazard ratio for death from any cause, 0.84; 95% CI, 0.76 to 0.93; P<0.001); of these patients, 558 (13.3%) and 693 (16.5%), respectively, died from cardiovascular causes (hazard ratio, 0.80; 95% CI, 0.71 to 0.89; P<0.001). As compared with enalapril, LCZ696 also reduced the risk of hospitalization for heart failure by 21% (P<0.001) and decreased the symptoms and physical limitations of heart failure (P=0.001). The LCZ696 group had higher proportions of patients with hypotension and nonserious angioedema but lower proportions with renal impairment, hyperkalemia, and cough than the enalapril group. CONCLUSIONS: LCZ696 was superior to enalapril in reducing the risks of death and of hospitalization for heart failure. (Funded by Novartis; PARADIGM-HF ClinicalTrials.gov number, NCT01035255.). [less ▲]

Detailed reference viewed: 918 (7 UL)
Full Text
Peer Reviewed
See detailESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD - summary.
Ryden, Lars; Grant, Peter J.; Anker, Stefan D. et al

in Diabetes and Vascular Disease Research (2014), 11(3), 133-73

Detailed reference viewed: 158 (1 UL)
Full Text
Peer Reviewed
See detailPlasma membrane calcium ATPase isoform 4 inhibits vascular endothelial growth factor-mediated angiogenesis through interaction with calcineurin.
Baggott, Rhiannon R.; Alfranca, Arantzazu; Lopez-Maderuelo, Dolores et al

in Arteriosclerosis, thrombosis, and vascular biology (2014), 34(10), 2310-20

OBJECTIVE: Vascular endothelial growth factor (VEGF) has been identified as a crucial regulator of physiological and pathological angiogenesis. Among the intracellular signaling pathways triggered by VEGF ... [more ▼]

OBJECTIVE: Vascular endothelial growth factor (VEGF) has been identified as a crucial regulator of physiological and pathological angiogenesis. Among the intracellular signaling pathways triggered by VEGF, activation of the calcineurin/nuclear factor of activated T cells (NFAT) signaling axis has emerged as a critical mediator of angiogenic processes. We and others previously reported a novel role for the plasma membrane calcium ATPase (PMCA) as an endogenous inhibitor of the calcineurin/NFAT pathway, via interaction with calcineurin, in cardiomyocytes and breast cancer cells. However, the functional significance of the PMCA/calcineurin interaction in endothelial pathophysiology has not been addressed thus far. APPROACH AND RESULTS: Using in vitro and in vivo assays, we here demonstrate that the interaction between PMCA4 and calcineurin in VEGF-stimulated endothelial cells leads to downregulation of the calcineurin/NFAT pathway and to a significant reduction in the subsequent expression of the NFAT-dependent, VEGF-activated, proangiogenic genes RCAN1.4 and Cox-2. PMCA4-dependent inhibition of calcineurin signaling translates into a reduction in endothelial cell motility and blood vessel formation that ultimately impairs in vivo angiogenesis by VEGF. CONCLUSIONS: Given the importance of the calcineurin/NFAT pathway in the regulation of pathological angiogenesis, targeted modulation of PMCA4 functionality might open novel therapeutic avenues to promote or attenuate new vessel formation in diseases that occur with angiogenesis. [less ▲]

Detailed reference viewed: 134 (0 UL)
Full Text
Peer Reviewed
See detailOutcomes in patients with acute and stable coronary syndromes; insights from the prospective NOBORI-2 study
Fath-Ordoubadi, F. A; Spaepen, E. B; El-Omar, M. A et al

in PLoS ONE (2014), 9(2),

Background: Contemporary data remains limited regarding mortality and major adverse cardiac events (MACE) outcomes in patients undergoing PCI for different manifestations of coronary artery disease ... [more ▼]

Background: Contemporary data remains limited regarding mortality and major adverse cardiac events (MACE) outcomes in patients undergoing PCI for different manifestations of coronary artery disease. Objectives: We evaluated mortality and MACE outcomes in patients treated with PCI for STEMI (ST-elevation myocardial infarction), NSTEMI (non ST-elevation myocardial infarction) and stable angina through analysis of data derived from the Nobori-2 study. Methods: Clinical endpoints were cardiac mortality and MACE (a composite of cardiac death, myocardial infarction and target vessel revascularization). Results: 1909 patients who underwent PCI were studied; 1332 with stable angina, 248 with STEMI and 329 with NSTEMI. Age-adjusted Charlson co-morbidity index was greatest in the NSTEMI cohort (3.78±1.91) and lowest in the stable angina cohort (3.00±1.69); P<0.0001. Following Cox multivariate analysis cardiac mortality was independently worse in the NSTEMI vs the stable angina cohort (HR 2.31 (1.10-4.87), p = 0.028) but not significantly different for STEMI vs stable angina cohort (HR 0.72 (0.16-3.19), p = 0.67). Similar observations were recorded for MACE (<180 days) (NSTEMI vs stable angina: HR 2.34 (1.21-4.55), p = 0.012; STEMI vs stable angina: HR 2.19 (0.97-4.98), p = 0.061. Conclusions: The longer-term Cardiac mortality and MACE were significantly worse for patients following PCI for NSTEMI even after adjustment of clinical demographics and Charlson co-morbidity index whilst the longer-term prognosis of patients following PCI STEMI was favorable, with similar outcomes as those patients with stable angina following PCI. © 2014 Fath-Ordoubadi et al. [less ▲]

Detailed reference viewed: 153 (1 UL)
Full Text
Peer Reviewed
See detailThe tumour suppressor Ras-association domain family protein 1A (RASSF1A) regulates TNF-alpha signalling in cardiomyocytes.
Mohamed, Tamer M. A.; Zi, Min; Prehar, Sukhpal et al

in Cardiovascular research (2014), 103(1), 47-59

AIMS: Tumour necrosis factor-alpha (TNF-alpha) plays a key role in the regulation of cardiac contractility. Although cardiomyocytes are known to express the TNF-alpha receptors (TNFRs), the mechanism of ... [more ▼]

AIMS: Tumour necrosis factor-alpha (TNF-alpha) plays a key role in the regulation of cardiac contractility. Although cardiomyocytes are known to express the TNF-alpha receptors (TNFRs), the mechanism of TNF-alpha signal transmission is incompletely understood. The aim of this study was to investigate whether the tumour suppressor Ras-association domain family protein 1 isoform A (RASSF1A) modulates TNF-alpha signalling in cardiomyocytes. METHODS AND RESULTS: We used RASSF1A knockout (RASSF1A(-/-)) mice and wild-type (WT) littermates in this study. Acute stimulation with a low dose of TNF-alpha (10 microg/kg iv) increased cardiac contractility and intracellular calcium transients' amplitude in WT mice. In contrast, RASSF1A(-/-) mice showed a blunted contractile response. Mechanistically, RASSF1A was essential in the formation of the TNFR complex (TNFRC), where it functions as an adaptor molecule to facilitate the recruitment of TNFR type 1-associated death domain protein and TNFR-associated factor 2 to form the TNF-alpha receptor complex. In the absence of RASSF1A, signal transmission from the TNF-alpha receptor complex to the downstream effectors, such as cytoplasmic phospholipase A2 and protein kinase A, was attenuated leading to the reduction in the activation of calcium handling molecules, such as L-type Ca(2+) channel and ryanodine receptors. CONCLUSION: Our data indicate an essential role of RASSF1A in regulating TNF-alpha signalling in cardiomyocytes, with RASSF1A being key in the formation of the TNFRC and in signal transmission to the downstream targets. [less ▲]

Detailed reference viewed: 91 (1 UL)
Full Text
Peer Reviewed
See detailArterial access site utilization in cardiogenic shock in the United Kingdom: is radial access feasible?
Mamas, Mamas A.; Anderson, Simon G.; Ratib, Karim et al

in American heart journal (2014), 167(6), 900-81

BACKGROUND: Cardiogenic shock (CS) remains the leading cause of mortality in patients hospitalized with acute myocardial infarction (AMI). The transradial access site (TRA) has become increasingly adopted ... [more ▼]

BACKGROUND: Cardiogenic shock (CS) remains the leading cause of mortality in patients hospitalized with acute myocardial infarction (AMI). The transradial access site (TRA) has become increasingly adopted as a default access site for percutaneous coronary intervention (PCI); however, even in experienced centers that favor the radial artery as the primary access site during PCI, patients presenting in CS are often treated via the transfemoral access site (TFA); and commentators have suggested that CS remains the final frontier that has given even experienced radial operators pause. We studied the use of TRA in patients presenting in CS in a nonselected high-risk cohort from the British Cardiovascular Intervention database over a 7-year period (2006-2012). METHODS: Mortality (30-day) and major adverse cardiac and cerebrovascular events (a composite of in-hospital mortality, in-hospital myocardial reinfarction, target vessel revascularization, and cerebrovascular events) were studied based on TFA and TRA utilization in CS patients. The influence of access site selection was studied in 7,231 CS patients; TFA was used in 5,354 and TRA in 1,877 patients. RESULTS: Transradial access site was independently associated with a lower 30-day mortality (hazard ratio [HR] 0.56, 95% CI 0.46-0.69, P = 0 < .001), in-hospital major adverse cardiac and cerebrovascular events (HR 0.64, 95% CI 0.53-0.76, P < .0001) and major bleeding (HR 0.37, 95% CI 0.18-0.73, P = .004). CONCLUSIONS: Although the majority of PCI cases performed in patients with cardiogenic shock in the United Kingdom are performed through the TFA, the radial artery represents an alternative viable access site in this high-risk cohort of patients in experienced centers. [less ▲]

Detailed reference viewed: 173 (3 UL)
Full Text
Peer Reviewed
See detailThe mammalian Ste20-like kinase 2 (Mst2) modulates stress-induced cardiac hypertrophy.
Zi, Min; Maqsood, Arfa; Prehar, Sukhpal et al

in The Journal of biological chemistry (2014), 289(35), 24275-88

The Hippo signaling pathway has recently moved to center stage in cardiac research because of its key role in cardiomyocyte proliferation and regeneration of the embryonic and newborn heart. However, its ... [more ▼]

The Hippo signaling pathway has recently moved to center stage in cardiac research because of its key role in cardiomyocyte proliferation and regeneration of the embryonic and newborn heart. However, its role in the adult heart is incompletely understood. We investigate here the role of mammalian Ste20-like kinase 2 (Mst2), one of the central regulators of this pathway. Mst2(-/-) mice showed no alteration in cardiomyocyte proliferation. However, Mst2(-/-) mice exhibited a significant reduction of hypertrophy and fibrosis in response to pressure overload. Consistently, overexpression of MST2 in neonatal rat cardiomyocytes significantly enhanced phenylephrine-induced cellular hypertrophy. Mechanistically, Mst2 positively modulated the prohypertrophic Raf1-ERK1/2 pathway. However, activation of the downstream effectors of the Hippo pathway (Yes-associated protein) was not affected by Mst2 ablation. An initial genetic study in mitral valve prolapse patients revealed an association between a polymorphism in the human MST2 gene and adverse cardiac remodeling. These results reveal a novel role of Mst2 in stress-dependent cardiac hypertrophy and remodeling in the adult mouse and likely human heart. [less ▲]

Detailed reference viewed: 171 (0 UL)
Peer Reviewed
See detailIncretins as a novel therapeutic strategy in patients with diabetes and heart failure.
Khan, M. A.; Deaton, C.; Rutter, M. K. et al

in Heart failure reviews (2013), 18(2), 141-8

Heart failure (HF) and diabetes mellitus (DM) commonly co-exist, with a prevalence of DM of up to 40 % in HF patients. Treatment of DM in patients with HF is challenging since many of the contemporary ... [more ▼]

Heart failure (HF) and diabetes mellitus (DM) commonly co-exist, with a prevalence of DM of up to 40 % in HF patients. Treatment of DM in patients with HF is challenging since many of the contemporary therapies used for the treatment of DM are either contraindicated in HF or are limited in their use due to the high prevalence of co-morbidities such as significant renal dysfunction. This article presents an overview of the physiology of the incretin system and how it can be targeted therapeutically, highlighting implications for the management of patients with DM and HF. Receptors for the incretin glucagon-like peptide-1 (GLP-1) are expressed throughout the cardiovascular system and the myocardium and are up-regulated in HF. GLP-1 therapy improves cardiac function in animal models of HF through augmented glucose uptake in the myocardium mediated through a p38 MAP kinase pathway. Small clinical studies have shown that GLP-1 improves ejection fraction, reduces BNP levels and enhances functional capacity in patients with chronic HF. A number of randomized controlled trials are currently underway to define the utility of targeting the incretin system in HF patients with DM. Incretin-based therapy may represent a novel therapeutic strategy in the treatment of HF patients with diabetes, in particular for their cardioprotective effects independent of those attributable to tight glycemic control. [less ▲]

Detailed reference viewed: 487 (1 UL)
Full Text
Peer Reviewed
See detailPacing-induced cardiomyopathy: pathophysiological insights through matrix metalloproteinases.
Ahmed, Fozia Z.; Khattar, Rajdeep S.; Zaidi, Amir M. et al

in Heart failure reviews (2013)

Pacing-induced ventricular dysfunction and pacing-induced cardiomyopathy (PiCMP) are recognized complications of chronic right ventricular pacing. Alterations in myocardial perfusion and sympathetic ... [more ▼]

Pacing-induced ventricular dysfunction and pacing-induced cardiomyopathy (PiCMP) are recognized complications of chronic right ventricular pacing. Alterations in myocardial perfusion and sympathetic innervation contribute to the development of pacing-induced heart disease. However, it is unlikely that these are the only processes involved. Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade the collagenous extracellular matrix and play a central role in left ventricular remodelling during the development of heart failure. While the pathophysiological mechanisms and altered MMP expression that occur in chronic pressure overload, ischaemic and non-ischaemic dilated cardiomyopathy have been defined, those that occur in the clinical setting of pacing-induced ventricular dysfunction and PiCMP have not been reported. Here we review the clinical epidemiology of pacing-induced ventricular dysfunction and discuss how data derived from animal models provide insight into how changes in MMP expression and function contribute to the development of PiCMP. The review concludes by exploring pacing strategies that may be used to prevent pacing-induced ventricular dysfunction. [less ▲]

Detailed reference viewed: 167 (0 UL)
Full Text
Peer Reviewed
See detailA novel immunomodulator, FTY-720 reverses existing cardiac hypertrophy and fibrosis from pressure overload by targeting NFAT (nuclear factor of activated T-cells) signaling and periostin.
Liu, Wei; Zi, Min; Tsui, Hoyee et al

in Circulation. Heart failure (2013), 6(4), 833-44

BACKGROUND: Hypertension or aortic stenosis causes pressure overload, which evokes hypertrophic myocardial growth. Sustained cardiac hypertrophy eventually progresses to heart failure. Growing evidence ... [more ▼]

BACKGROUND: Hypertension or aortic stenosis causes pressure overload, which evokes hypertrophic myocardial growth. Sustained cardiac hypertrophy eventually progresses to heart failure. Growing evidence indicates that restraining hypertrophy could be beneficial; here, we discovered that FTY-720, an immunomodulator for treating multiple sclerosis, can reverse existing cardiac hypertrophy/fibrosis. METHODS AND RESULTS: Male C57/Bl6 mice underwent transverse aortic constriction (TAC) for 1 week followed by FTY-720 treatment for 2 weeks under continuing TAC. Compared with vehicle-treated TAC hearts, FTY-720 significantly reduced ventricular mass, ameliorated fibrosis, and improved cardiac performance. Mechanistic studies led us to discover that FTY-720 appreciably inhibited nuclear factor of activated T-cells (NFAT) activity. Moreover, we found that in primary cardiomyocytes (rat and human) pertussis toxin (Gi-coupled receptor inhibitor) substantially blocked the antihypertrophic effect of FTY-720. This observation was confirmed in a mouse model of pressure overload. Interestingly, gene array analysis of TAC hearts revealed that FTY-720 profoundly decreased gene expression of a group of matricellular proteins, of which periostin was prominent. Analysis of periostin protein expression in TAC-myocardium, as well as in rat and human cardiac fibroblasts, confirmed the array data. Moreover, we found that FTY-720 treatment or knockdown of periostin protein was able to inhibit transforming growth factor-beta responsiveness and decrease collagen expression. CONCLUSIONS: FTY-720 alleviates existing cardiac hypertrophy/fibrosis through mechanisms involving negative regulation of NFAT activity in cardiomyocytes and reduction of periostin expression allowing for a more homeostatic extracellular compartment milieu. Together, FTY-720 or its analogues could be a promising new approach for treating hypertrophic/fibrotic heart disease. [less ▲]

Detailed reference viewed: 172 (0 UL)