![]() ; ; et al E-print/Working paper (2020) The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic ... [more ▼] The genetic basis of Lewy body dementia (LBD) is not well understood. Here, we performed whole-genome sequencing in large cohorts of LBD cases and neurologically healthy controls to study the genetic architecture of this understudied form of dementia and to generate a resource for the scientific community. Genome-wide association analysis identified five independent risk loci, whereas genome-wide gene-aggregation tests implicated mutations in the gene GBA. Genetic risk scores demonstrate that LBD shares risk profiles and pathways with Alzheimer’s and Parkinson’s disease, providing a deeper molecular understanding of the complex genetic architecture of this age-related neurodegenerative condition.Competing Interest StatementThomas G. Beach is a consultant for Prothena, Vivid Genomics and Avid Radiopharmaceuticals. He is a scientific advisory board member for Vivid Genomics. John A. Hardy, Huw R. Morris, Stuart Pickering-Brown, Andrew B. Singleton, and Bryan J. Traynor hold US, EU and Canadian patents on the clinical testing and therapeutic intervention for the hexanucleotide repeat expansion of C9orf72. Michael A. Nalls is supported by a consulting contract between Data Tecnica International and the National Institute on Aging, NIH, Bethesda, MD, USA; as a possible conflict of interest Dr. Nalls also consults for Neuron23 Inc., Lysosomal Therapeutics Inc., Illumina Inc., the Michael J. Fox Foundation and Vivid Genomics among others. Jose A. Palma is an editorial board member of Movement Disorders, Parkinsonism & Related Disorders, BMC Neurology, and Clinical Autonomic Research. Bradley F. Boeve, James Leverenz, and Sonja W. Scholz serve on the Scientific Advisory Council of the Lewy Body Dementia Association. Sonja W. Scholz is an editorial board member for the Journal of Parkinson's Disease. Bryan J. Traynor is an editorial board member for JAMA Neurology; Journal of Neurology, Neurosurgery, and Psychiatry; Brain; and Neurobiology of Aging. Zbigniew K. Wszolek serves as a principal investigator or co-principal investigator on Abbvie, Inc. (M15-562 and M15-563), Biogen, Inc. (228PD201) grant, and Biohaven Pharmaceuticals, Inc. (BHV4157-206 and BHV3241-301). Zbigniew K. Wszolek serves as the principal investigator of the Mayo Clinic American Parkinson Disease Association (APDA) Information and Referral Center, and as co-principal investigator of the Mayo Clinic APDA Center for Advanced Research. All other authors report no competing interests. [less ▲] Detailed reference viewed: 211 (3 UL)![]() ![]() ; ; et al in Nature genetics (2019), 51(7), 1192-1193 An amendment to this paper has been published and can be accessed via a link at the top of the paper. Detailed reference viewed: 33 (5 UL)![]() ![]() ; ; et al in Nature genetics (2018), 50(4), 524-537 Stroke has multiple etiologies, but the underlying genes and pathways are largely unknown. We conducted a multiancestry genome-wide-association meta-analysis in 521,612 individuals (67,162 cases and 454 ... [more ▼] Stroke has multiple etiologies, but the underlying genes and pathways are largely unknown. We conducted a multiancestry genome-wide-association meta-analysis in 521,612 individuals (67,162 cases and 454,450 controls) and discovered 22 new stroke risk loci, bringing the total to 32. We further found shared genetic variation with related vascular traits, including blood pressure, cardiac traits, and venous thromboembolism, at individual loci (n = 18), and using genetic risk scores and linkage-disequilibrium-score regression. Several loci exhibited distinct association and pleiotropy patterns for etiological stroke subtypes. Eleven new susceptibility loci indicate mechanisms not previously implicated in stroke pathophysiology, with prioritization of risk variants and genes accomplished through bioinformatics analyses using extensive functional datasets. Stroke risk loci were significantly enriched in drug targets for antithrombotic therapy. [less ▲] Detailed reference viewed: 11 (0 UL)![]() ; ; et al in PloS one (2014), 9(6), 94661 BACKGROUND: Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study ... [more ▼] BACKGROUND: Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls. PRINCIPAL FINDINGS: In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p = 1.4x10-6) and 14 (IGHV1-67 p = 7.9x10-8) which indexed novel susceptibility loci. SIGNIFICANCE: The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease. [less ▲] Detailed reference viewed: 148 (8 UL)![]() ; ; et al in Lancet neurology (2014), 13(7), 686-99 BACKGROUND: Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three ... [more ▼] BACKGROUND: Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes-MAPT, GRN, and C9orf72-have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder. METHODS: We did a two-stage genome-wide association study on clinical FTD, analysing samples from 3526 patients with FTD and 9402 healthy controls. To reduce genetic heterogeneity, all participants were of European ancestry. In the discovery phase (samples from 2154 patients with FTD and 4308 controls), we did separate association analyses for each FTD subtype (behavioural variant FTD, semantic dementia, progressive non-fluent aphasia, and FTD overlapping with motor neuron disease [FTD-MND]), followed by a meta-analysis of the entire dataset. We carried forward replication of the novel suggestive loci in an independent sample series (samples from 1372 patients and 5094 controls) and then did joint phase and brain expression and methylation quantitative trait loci analyses for the associated (p<5 x 10(-8)) single-nucleotide polymorphisms. FINDINGS: We identified novel associations exceeding the genome-wide significance threshold (p<5 x 10(-8)). Combined (joint) analyses of discovery and replication phases showed genome-wide significant association at 6p21.3, HLA locus (immune system), for rs9268877 (p=1.05 x 10(-8); odds ratio=1.204 [95% CI 1.11-1.30]), rs9268856 (p=5.51 x 10(-9); 0.809 [0.76-0.86]) and rs1980493 (p value=1.57 x 10(-8), 0.775 [0.69-0.86]) in the entire cohort. We also identified a potential novel locus at 11q14, encompassing RAB38/CTSC (the transcripts of which are related to lysosomal biology), for the behavioural FTD subtype for which joint analyses showed suggestive association for rs302668 (p=2.44 x 10(-7); 0.814 [0.71-0.92]). Analysis of expression and methylation quantitative trait loci data suggested that these loci might affect expression and methylation in cis. INTERPRETATION: Our findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways (link to 11q14) are potentially involved in FTD. Our findings need to be replicated to better define the association of the newly identified loci with disease and to shed light on the pathomechanisms contributing to FTD. FUNDING: The National Institute of Neurological Disorders and Stroke and National Institute on Aging, the Wellcome/MRC Centre on Parkinson's disease, Alzheimer's Research UK, and Texas Tech University Health Sciences Center. [less ▲] Detailed reference viewed: 169 (9 UL)![]() ; ; et al in Nature Genetics (2013), 45 Detailed reference viewed: 260 (10 UL)![]() ; ; et al in Nature genetics (2009), 41(12), 1308-12 We performed a genome-wide association study (GWAS) in 1,713 individuals of European ancestry with Parkinson's disease (PD) and 3,978 controls. After replication in 3,361 cases and 4,573 controls, we ... [more ▼] We performed a genome-wide association study (GWAS) in 1,713 individuals of European ancestry with Parkinson's disease (PD) and 3,978 controls. After replication in 3,361 cases and 4,573 controls, we observed two strong association signals, one in the gene encoding alpha-synuclein (SNCA; rs2736990, OR = 1.23, P = 2.24 x 10(-16)) and another at the MAPT locus (rs393152, OR = 0.77, P = 1.95 x 10(-16)). We exchanged data with colleagues performing a GWAS in Japanese PD cases. Association to PD at SNCA was replicated in the Japanese GWAS, confirming this as a major risk locus across populations. We replicated the effect of a new locus detected in the Japanese cohort (PARK16, rs823128, OR = 0.66, P = 7.29 x 10(-8)) and provide supporting evidence that common variation around LRRK2 modulates risk for PD (rs1491923, OR = 1.14, P = 1.55 x 10(-5)). These data demonstrate an unequivocal role for common genetic variants in the etiology of typical PD and suggest population-specific genetic heterogeneity in this disease. [less ▲] Detailed reference viewed: 300 (5 UL) |
||