References of "Mysore Rama Rao, Bhavani Shankar 50002712"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDiscrete-Phase Sequence Design with Stopband and PSL Constraints for Cognitive Radar
Alaeekerahroodi, Mohammad UL; Kumar, Sumit UL; Mysore Rama Rao, Bhavani Shankar UL et al

in Proceedings of EuRAD 2020 (in press)

We present the design of discrete-phase sequences considering simultaneously the peak sidelobe level (PSL) and avoiding reserved frequency bands which are occupied by narrowband interferers or ... [more ▼]

We present the design of discrete-phase sequences considering simultaneously the peak sidelobe level (PSL) and avoiding reserved frequency bands which are occupied by narrowband interferers or communications. We use the coordinate descent framework and propose an algorithm to design discrete-phase sequences with spectral power suppressed in arbitrary bands and with low auto-correlation sidelobes in terms of PSL. Our proposed algorithm exploits fast Fourier transform and is, therefore, computationally efficient. The over-the-air experiments using implementation on software-defined radio show reasonable agreement with numerical simulations and feasibility for field-deployment [less ▲]

Detailed reference viewed: 67 (5 UL)
Full Text
Peer Reviewed
See detailAutomotive Squint-forward-looking SAR: High Resolution and Early Warning
Hu, Ruizhi UL; Mysore Rama Rao, Bhavani Shankar UL; Murtada, Ahmed Abdelnaser Elsayed UL et al

in IEEE Journal of Selected Topics in Signal Processing (2021)

Forward-looking automotive radars can sense long-distant targets to enable early warning, but the lateral resolution is limited. Synthetic aperture radar (SAR) techniques can achieve very high azimuth ... [more ▼]

Forward-looking automotive radars can sense long-distant targets to enable early warning, but the lateral resolution is limited. Synthetic aperture radar (SAR) techniques can achieve very high azimuth resolution but cannot resolve targets in the forward direction. As a trade-off, squint-forward-looking SAR (SFL-SAR) can perform 2D imaging on a distant area squint to the moving direction, providing both high resolution and early warning. In this paper, we analyzed and derived the constraints of automotive SFL-SAR to satisfy both the required resolution and braking distance. Simulations and imaging results verified the analysis. [less ▲]

Detailed reference viewed: 92 (11 UL)
Full Text
Peer Reviewed
See detailAnalog Beamforming with Antenna Selection for Large-Scale Antenna Arrays
Arora, Aakash UL; Tsinos, Christos; Mysore Rama Rao, Bhavani Shankar UL et al

in Proc. 2021 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2021)

In large-scale antenna array (LSAA) wireless communication systems employing analog beamforming architectures, the placement or selection of a subset of antennas can significantly reduce the power ... [more ▼]

In large-scale antenna array (LSAA) wireless communication systems employing analog beamforming architectures, the placement or selection of a subset of antennas can significantly reduce the power consumption and hardware complexity. In this work, we propose a joint design of analog beamforming with antenna selection (AS) or antenna placement (AP) for an analog beamforming system. We approach this problem from a beampattern matching perspective and formulate a sparse unit-modulus least-squares (SULS) problem, which is a nonconvex problem due to the unit-modulus and the sparsity constraints. To that end, we propose an efficient and scalable algorithm based on the majorization-minimization (MM) framework for solving the SULS problem. We show that the sequence of iterates generated by the algorithm converges to a stationary point of the problem. Numerical results demonstrate that the proposed joint design of analog beamforming with AS outperforms conventional array architectures with fixed inter-antenna element spacing. [less ▲]

Detailed reference viewed: 59 (13 UL)
Full Text
Peer Reviewed
See detailOn the Asymptotic Performance of One-Bit Co-Array-Based Music
Sedighi, Saeid UL; Mysore Rama Rao, Bhavani Shankar UL; Soltanalian, Mojtaba et al

in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2021)

Co-array-based Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable attention in array processing thanks to its capability of providing enhanced degrees ... [more ▼]

Co-array-based Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable attention in array processing thanks to its capability of providing enhanced degrees of freedom for DoAs that can be resolved. Additionally, deployment of one-bit Analog-to-Digital Converters (ADCs) has become an important topic in array processing, as it offers both a low-cost and a low-complexity implementation. Although the problem of DoA estimation form one-bit SLA measurements has been studied in some prior works, its analytical performance has not yet been investigated and characterized. In this paper, to provide valuable insights into the performance of DoA estimation from one-bit SLA measurements, we derive an asymptotic closed-form expression for the performance of One-Bit Co-Array-Based MUSIC (OBCAB-MUSIC). Further, numerical simulations are provided to validate the asymptotic closed-form expression for the performance of OBCAB-MUSIC and to show an interesting use case of it in evaluating the resolution of OBCAB-MUSIC. [less ▲]

Detailed reference viewed: 31 (1 UL)
Full Text
Peer Reviewed
See detailDoA Estimation Using Low-Resolution Multi-BitSparse Array Measurements
Sedighi, Saeid UL; Mysore Rama Rao, Bhavani Shankar UL; Soltanalian, Mojtaba et al

in IEEE Signal Processing Letters (2021)

This letter studies the problem of Direction of Arrival (DoA) estimation from low-resolution few-bit quantized data collected by Sparse Linear Array (SLA). In such cases, contrary to the one-bit ... [more ▼]

This letter studies the problem of Direction of Arrival (DoA) estimation from low-resolution few-bit quantized data collected by Sparse Linear Array (SLA). In such cases, contrary to the one-bit quantization case, the well known arcsine law cannot be employed to estimate the covaraince matrix of unquantized array data. Instead, we develop a novel optimization-based framework for retrieving the covaraince matrix of unquantized array data from low-resolution few-bit measurements. The MUSIC algorithm is then applied to an augmented version of the recovered covariance matrix to find the source DoAs. The simulation results show that increasing the sampling resolution to $2$ or $4$ bits per samples could significantly increase the DoA estimation performance compared to the one-bit sampling regime while the power consumption and implementation costs is still much lower in comparison to the high-resolution sampling implementations. [less ▲]

Detailed reference viewed: 52 (3 UL)
Full Text
Peer Reviewed
See detailLocalization Performance of 1-Bit Passive Radars in NB-IoT Applications using Multivariate Polynomial Optimization
Sedighi, Saeid UL; Mishra, Kumar Vijay; Mysore Rama Rao, Bhavani Shankar UL et al

in IEEE Transactions on Signal Processing (2021), 69

Several Internet-of-Things (IoT) applications provide location-based services, wherein it is critical to obtain accurate position estimates by aggregating information from individual sensors. In the ... [more ▼]

Several Internet-of-Things (IoT) applications provide location-based services, wherein it is critical to obtain accurate position estimates by aggregating information from individual sensors. In the recently proposed narrowband IoT (NB-IoT) standard, which trades off bandwidth to gain wide coverage, the location estimation is compounded by the low sampling rate receivers and limited-capacity links. We address both of these NB-IoT drawbacks in the framework of passive sensing devices that receive signals from the target-of-interest. We consider the limiting case where each node receiver employs one-bit analog-to-digital-converters and propose a novel low-complexity nodal delay estimation method using constrained-weighted least squares minimization. To support the low-capacity links to the fusion center (FC), the range estimates obtained at individual sensors are then converted to one-bit data. At the FC, we propose target localization with the aggregated one-bit range vector using both optimal and sub-optimal techniques. The computationally expensive former approach is based on Lasserre's method for multivariate polynomial optimization while the latter employs our less complex iterative joint r\textit{an}ge-\textit{tar}get location \textit{es}timation (ANTARES) algorithm. Our overall one-bit framework not only complements the low NB-IoT bandwidth but also supports the design goal of inexpensive NB-IoT location sensing. Numerical experiments demonstrate feasibility of the proposed one-bit approach with a 0.6\% increase in the normalized localization error for the small set of 20-60 nodes over the full-precision case. When the number of nodes is sufficiently large (>80), the one-bit methods yield the same performance as the full precision. [less ▲]

Detailed reference viewed: 49 (2 UL)
Full Text
Peer Reviewed
See detailPrecoding for Satellite Communications: Why, How and What next?
Mysore Rama Rao, Bhavani Shankar UL; Lagunas, Eva UL; Chatzinotas, Symeon UL et al

in IEEE Communications Letters (2021)

Detailed reference viewed: 92 (9 UL)
Full Text
Peer Reviewed
See detailOn the Performance of One-Bit DoA Estimation via Sparse Linear Arrays
Sedighi, Saeid UL; Mysore Rama Rao, Bhavani Shankar UL; Soltanalian, Mojtaba et al

in IEEE Transactions on Signal Processing (2021)

Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable attention in array processing thanks to their capability to provide enhanced degrees of freedom in ... [more ▼]

Direction of Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable attention in array processing thanks to their capability to provide enhanced degrees of freedom in resolving uncorrelated source signals. Additionally, deployment of one-bit Analog-to-Digital Converters (ADCs) has emerged as an important topic in array processing, as it offers both a low-cost and a low-complexity implementation. In this paper, we study the problem of DoA estimation from one-bit measurements received by an SLA. Specifically, we first investigate the identifiability conditions for the DoA estimation problem from one-bit SLA data and establish an equivalency with the case when DoAs are estimated from infinite-bit unquantized measurements. Towards determining the performance limits of DoA estimation from one-bit quantized data, we derive a pessimistic approximation of the corresponding Cram\'{e}r-Rao Bound (CRB). This pessimistic CRB is then used as a benchmark for assessing the performance of one-bit DoA estimators. We also propose a new algorithm for estimating DoAs from one-bit quantized data. We investigate the analytical performance of the proposed method through deriving a closed-form expression for the covariance matrix of the asymptotic distribution of the DoA estimation errors and show that it outperforms the existing algorithms in the literature. Numerical simulations are provided to validate the analytical derivations and corroborate the resulting performance improvement. [less ▲]

Detailed reference viewed: 32 (2 UL)
Full Text
Peer Reviewed
See detailEfficient Algorithms for Constant-Modulus Analog Beamforming
Arora, Aakash UL; Tsinos, Christos; Mysore Rama Rao, Bhavani Shankar UL et al

in IEEE Transactions on Signal Processing (2021)

The use of a large-scale antenna array (LSAA) has become an important characteristic of multi-antenna communication systems to achieve beamforming gains. For example, in millimeter wave (mmWave) systems ... [more ▼]

The use of a large-scale antenna array (LSAA) has become an important characteristic of multi-antenna communication systems to achieve beamforming gains. For example, in millimeter wave (mmWave) systems, an LSAA is employed at the transmitter/receiver end to combat severe propagation losses. In such applications, each antenna element has to be driven by a radio frequency (RF) chain for the implementation of fully-digital beamformers. This strict requirement significantly increases the hardware cost, complexity, and power consumption. Therefore, constant-modulus analog beamforming (CMAB) becomes a viable solution. In this paper, we consider the scaled analog beamforming (SAB) or CMAB architecture and design the system parameters by solving the beampattern matching problem. We consider two beampattern matching problems. In the first case, both the magnitude and phase of the beampattern are matched to the given desired beampattern whereas in the second case, only the magnitude of the beampattern is matched. Both the beampattern matching problems are cast as a variant of the constant-modulus least-squares problem. We provide efficient algorithms based on the alternating majorization-minimization (AMM) framework that combines the alternating minimization and the MM frameworks and the conventional-cyclic coordinate descent (C-CCD) framework to solve the problem in each case. We also propose algorithms based on a new modified-CCD (M-CCD) based approach. For all the developed algorithms we prove convergence to a Karush-Kuhn-Tucker (KKT) point (or a stationary point). Numerical results demonstrate that the proposed algorithms converge faster than state-of-the-art solutions. Among all the algorithms, the M-CCD-based algorithms have faster convergence when evaluated in terms of the number of iterations and the AMM-based algorithms offer lower complexity. [less ▲]

Detailed reference viewed: 57 (4 UL)
Full Text
Peer Reviewed
See detailSpatial- and Range- ISLR Trade-off in MIMO Radar Systems via Waveform Design
Raei, Ehsan UL; Alaeekerahroodi, Mohammad UL; Mysore Rama Rao, Bhavani Shankar UL

in IEEE Transactions on Signal Processing (2021)

This paper aims to design a set of transmit waveforms in cognitive colocated Multi-Input Multi-Output (MIMO) radar systems considering the simultaneous minimization of the contradictory objectives of ... [more ▼]

This paper aims to design a set of transmit waveforms in cognitive colocated Multi-Input Multi-Output (MIMO) radar systems considering the simultaneous minimization of the contradictory objectives of spatial- and the range- Integrated Sidelobe Level Ratio (ISLR). The design problem is formulated as a bi-objective Pareto optimization under practical constraints on the waveforms, namely total transmit power, peak-to-average-power ratio (PAR), constant modulus, and discrete phase alphabet. A Coordinate Descent (CD) based approach is proposed where the solution in each iteration is handled through novel methodologies designed in the paper. The simultaneous optimization leads to a trade-off between the two ISLRs and the simulation results illustrate significantly improved trade-off offered by the proposed methodologies. [less ▲]

Detailed reference viewed: 96 (21 UL)
Full Text
Peer Reviewed
See detailJoint User Grouping, Scheduling, and Precoding for Multicast Energy Efficiency in Multigroup Multicast Systems
Bandi, Ashok UL; Mysore Rama Rao, Bhavani Shankar UL; Chatzinotas, Symeon UL et al

in IEEE Transactions on Wireless Communications (2020)

This paper studies the joint design of user grouping, scheduling (or admission control) and precoding to optimize energy efficiency (EE) for multigroup multicast scenarios in single-cell multiuser MISO ... [more ▼]

This paper studies the joint design of user grouping, scheduling (or admission control) and precoding to optimize energy efficiency (EE) for multigroup multicast scenarios in single-cell multiuser MISO downlink channels. Noticing that the existing definition of EE fails to account for group sizes, a new metric called multicast energy efficiency (MEE) is proposed. In this context, the joint design is considered for the maximization of MEE, EE, and scheduled users. Firstly, with the help of binary variables (associated with grouping and scheduling) the joint design problem is formulated as a mixed-Boolean fractional programming problem such that it facilitates the joint update of grouping, scheduling and precoding variables. Further, several novel optimization formulations are proposed to reveal the hidden difference of convex/ concave structure in the objective and associated constraints. Thereafter, we propose a convex-concave procedure framework based iterative algorithm for each optimization criteria where grouping, scheduling, and precoding variables are updated jointly in each iteration. Finally, we compare the performance of the three design criteria concerning three performance metrics namely MEE, EE, and scheduled users through Monte-Carlo simulations. These simulations establish the need for MEE and the improvement from the system optimization. [less ▲]

Detailed reference viewed: 138 (27 UL)
Full Text
Peer Reviewed
See detailSatellite Communications in the New Space Era: A Survey and Future Challenges
Kodheli, Oltjon UL; Lagunas, Eva UL; Maturo, Nicola UL et al

in IEEE Communications Surveys and Tutorials (2020)

Satellite communications (SatComs) have recently entered a period of renewed interest motivated by technological advances and nurtured through private investment and ventures. The present survey aims at ... [more ▼]

Satellite communications (SatComs) have recently entered a period of renewed interest motivated by technological advances and nurtured through private investment and ventures. The present survey aims at capturing the state of the art in SatComs, while highlighting the most promising open research topics. Firstly, the main innovation drivers are motivated, such as new constellation types, on-board processing capabilities, nonterrestrial networks and space-based data collection/processing. Secondly, the most promising applications are described i.e. 5G integration, space communications, Earth observation, aeronautical and maritime tracking and communication. Subsequently, an in-depth literature review is provided across five axes: i) system aspects, ii) air interface, iii) medium access, iv) networking, v) testbeds & prototyping. Finally, a number of future challenges and the respective open research topics are described. [less ▲]

Detailed reference viewed: 106 (18 UL)
Full Text
Peer Reviewed
See detailGround‐to‐GEO optical feeder links for very high throughput satellite networks: Accent on diversity techniques
Mengali, Alberto; Kourogiorgas, Charilaos; Lyras, Nikolaos et al

in International Journal of Satellite Communications and Networking (2020)

This paper studies the use of optical feeder links in very high throughput satellites (VHTS) networks with emphasis on gateway diversity techniques to mitigate the inherent propagation losses in optical ... [more ▼]

This paper studies the use of optical feeder links in very high throughput satellites (VHTS) networks with emphasis on gateway diversity techniques to mitigate the inherent propagation losses in optical frequencies. Focusing on a GEO scenario, the paper considers a system‐wide approach investigating various challenges of optical feeder links. These include transmission schemes amenable for transparent on‐board processing, optical channel models taking into account blockage by clouds and fading caused by atmospheric turbulence in addition to complexity of on‐board and on‐ground processing. The channel models are then used to dimension the ground segment towards ensuring a given availability percentage (e.g., 99.9%). The channel model and payload complexity further influence the choice of link layer techniques used for counteracting fading due to atmospheric turbulence in the absence of blockage. An elaborate end‐to‐end simulator incorporating the proposed channel models capturing the nuances of various processing blocks like optical‐electrical conversion is developed. The system performance results provide interesting insights and a framework for assessing the feasibility and advantages of optical feeder links in VHTS systems. [less ▲]

Detailed reference viewed: 23 (3 UL)
Full Text
Peer Reviewed
See detailJoint User Scheduling, and Precoding for Multicast Spectral Efficiency in Multigroup Multicast Systems
Bandi, Ashok UL; Mysore Rama Rao, Bhavani Shankar UL; Chatzinotas, Symeon UL et al

in International conference on signal processing and communications (SPCOM) (2020, July)

This paper studies the joint design of user scheduling and precoding for the maximization of spectral efficiency (SE) for a multigroup multicast scenario in multiuser MISO downlink channels. Noticing that ... [more ▼]

This paper studies the joint design of user scheduling and precoding for the maximization of spectral efficiency (SE) for a multigroup multicast scenario in multiuser MISO downlink channels. Noticing that the existing definition of SE fails to account for group sizes, a new metric called multicast spectral efficiency (MC-SE) is proposed. In this context, the joint design is considered for the maximization of MC-SE. Firstly, with the help of binary scheduling variables, the joint design problem is formulated as a mixed-integer non-linear programming problem such that it facilitates the joint update of scheduling and precoding variables. Further, useful reformulations are proposed to reveal the hidden difference-of-convex/concave structure of the problem. Thereafter, we propose a convex-concave procedure based iterative algorithm with convergence guarantees to a stationary point. Finally, we compare different aspects namely MC-SE, SE and number of scheduled users through Monte-Carlo simulations. [less ▲]

Detailed reference viewed: 78 (7 UL)
Full Text
Peer Reviewed
See detailInformation Theoretic Approach for Waveform Design in Coexisting MIMO Radar and MIMO Communications
Alaeekerahroodi, Mohammad UL; Mysore Rama Rao, Bhavani Shankar UL; Mishra, Kumar Vijay et al

in Information Theoretic Approach for Waveform Design in Coexisting MIMO Radar and MIMO Communications (2020, May 14)

We investigate waveform design for coexistence between a multipleinput multiple-output (MIMO) radar and MIMO communications (MRMC), with a radar-centric criterion that leads to a minimal interference in ... [more ▼]

We investigate waveform design for coexistence between a multipleinput multiple-output (MIMO) radar and MIMO communications (MRMC), with a radar-centric criterion that leads to a minimal interference in the communications system. The communications use the traditional mode of operation in Long Term Evolution (LTE)/Advanced (FDD), where we formulate the design problem based on information-theoretic criterion with the discrete phase constraint at the design stage. The optimization problem, is nonconvex, multi-objective and multi-variable, where we propose an efficient algorithm based on the coordinate descent (CD) framework to simultaneously improve radar target detection performance and the communications rate. The numerical results indicate the effectiveness of the proposed algorithm in designing discrete phase set of sequences, potentially binary. [less ▲]

Detailed reference viewed: 42 (1 UL)
Full Text
Peer Reviewed
See detailOne-bitDoA estimation via Sparse Linear Arrays
Sedighi, Saeid UL; Mysore Rama Rao, Bhavani Shankar UL; Soltanalian, Mojtaba et al

in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2020)

Parameter estimation from noisy and one-bit quantized data has become an important topic in signal processing, as it offers low cost and low complexity in the implementation. On the other hand, Direction ... [more ▼]

Parameter estimation from noisy and one-bit quantized data has become an important topic in signal processing, as it offers low cost and low complexity in the implementation. On the other hand, Direction-of-Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable interest in array processing due to their attractive capability of providing enhanced degrees of freedom. In this paper, the problem of DoA estimation from one-bit measurements received by an SLA is considered and a novel framework for solving this problem is proposed. The proposed approach first provides an estimate of the received signal covariance matrix through minimization of a constrained weighted least-squares criterion. Then, MUSIC is applied to the spatially smoothed version of the estimated covariance matrix to find the DoAs of interest. Several numerical results are provided to demonstrate the superiority of the proposed approach over its counterpart already propounded in the literature. [less ▲]

Detailed reference viewed: 29 (1 UL)
Full Text
Peer Reviewed
See detailCramer-Rao Bound on DOA Estimation of Finite Bandwidth Signals Using a Moving Sensor
Arora, Aakash UL; Mysore Rama Rao, Bhavani Shankar UL; Ottersten, Björn UL

in Proc. 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2020)

In this paper, we provide a framework for the direction of arrival (DOA) estimation using a single moving sensor and evaluate performance bounds on estimation. We introduce a signal model which captures ... [more ▼]

In this paper, we provide a framework for the direction of arrival (DOA) estimation using a single moving sensor and evaluate performance bounds on estimation. We introduce a signal model which captures spatio-temporal incoherency in the received signal due to sensor motion in space and finite bandwidth of the signal, hitherto not considered. We show that in such a scenario, the source signal covariance matrix becomes a function of the source DOA, which is usually not the case. Due to this unknown dependency, traditional subspace techniques cannot be applied and conditions on source covariance needs to imposed to ensure identifiability. This motivates us to investigate the performance bounds through the Cramer-Rao Lower Bounds (CRLBs) to set benchmark performance for future estimators. This paper exploits the signal model to derive an appropriate CRLB, which is shown to be better than those in relevant literature. [less ▲]

Detailed reference viewed: 59 (20 UL)
Full Text
Peer Reviewed
See detailSidelobe Performance Analysis of Noise Waveforms Considering the Doppler Mismatch
Tedgue Beltrao, Gabriel UL; Pralon, Leandro; Alaeekerahroodi, Mohammad UL et al

in Proceedings of the 21st International Radar Symposium (IRS), Warsaw, Poland, 2020 (2020)

Waveform design and optimization algorithms generally assume a zero-Doppler ideal case to reach an optimum or satisfactory solution in terms of the matched filter output. Therefore, its performance is ... [more ▼]

Waveform design and optimization algorithms generally assume a zero-Doppler ideal case to reach an optimum or satisfactory solution in terms of the matched filter output. Therefore, its performance is usually characterized only in terms of the resultant waveforms autocorrelation function, neglecting the practical situation in which the received signal is modulated by the target’s Doppler shift. Within this context, this work investigates the Doppler mismatch effects in the Integrated Sidelobe Level (ISL) performance of previously designed/optimized noise waveforms. The analysis has shown that, despite much better results for steady targets, the increasing Doppler mismatch reduces the ISL performance of optimized waveforms, until similar levels achieved when no optimization is performed. To address that, a subpulse Doppler processing approach is also considered, and the results have shown that, besides increasing the Doppler tolerance, it has also increased the optimized waveform robustness to the Doppler mismatch, reducing the resultant ISL loss and thus extending its applicability. [less ▲]

Detailed reference viewed: 56 (5 UL)
Full Text
Peer Reviewed
See detailJoint Waveform/Receiver Design for Vital-Sign Detection in Signal-Dependent Interference
Tedgue Beltrao, Gabriel UL; Alaeekerahroodi, Mohammad UL; Schroeder, Udo et al

in Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020 (2020)

This paper presents the joint design of discrete slow-time radar waveform and receive filter, with the aim of enhancing the Signal to Interference and Noise Ratio (SINR) in phase coded radar systems for ... [more ▼]

This paper presents the joint design of discrete slow-time radar waveform and receive filter, with the aim of enhancing the Signal to Interference and Noise Ratio (SINR) in phase coded radar systems for vital-sign monitoring. Towards this, we consider maximizing the SINR at the input of the vital-sign estimation block, when transmitting hardware efficient Mary Phase Shift Keying (MPSK) sequences. This multi-variable and non-convex optimization problem is efficiently solved based on a Minimum Variance Distortionless Response (MVDR) filter, with the Coordinate Descent (CD) approach for the sequence optimization, and the obtained results have shown attractive interference suppression capabilities, even for the simple binary case. [less ▲]

Detailed reference viewed: 93 (5 UL)