References of "Moze, O."
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTemperature dependence of dipole-field scattering in Nanoperm
Michels, Andreas UL; Vecchini, C.; Moze, O. et al

in Journal of Magnetism and Magnetic Materials (2007), 316(2), 448-450

We present small-angle neutron scattering (SANS) data for the temperature variation of the recently observed dipole-field-induced spin-misalignment scattering in the soft magnetic nanocomposite Nanoperm ... [more ▼]

We present small-angle neutron scattering (SANS) data for the temperature variation of the recently observed dipole-field-induced spin-misalignment scattering in the soft magnetic nanocomposite Nanoperm (Fe89Zr7B3Cu1). The associated clover-leaf-shaped angular anisotropy of the SANS pattern, which is due to spin disorder arising from dipolar stray fields of the iron nanoparticles, persists up to several hundred Kelvin above the decoupling point of the intergranular amorphous matrix phase. This observation, in conjunction with the q-dependence of the scattering, suggests the existence of long-range magnetic correlations between the iron particles through the paramagnetic matrix, in agreement with previous investigations. The characteristic wavelength of the dipole-field-induced spin disorder appears to be temperature independent. [less ▲]

Detailed reference viewed: 113 (2 UL)
Full Text
Peer Reviewed
See detailSmall angle neutron scattering investigations of spin disorder in nanocomposite soft magnets
Vecchini, C.; Moze, O.; Suzuki, K. et al

in Journal of Alloys and Compounds (2006), 423(1-2), 31-36

The technique of SANS (small angle neutron scattering) furnishes unique information on the characteristic magnetic length scales and local magnetic anisotropies at the nanoscale in nanocomposite ... [more ▼]

The technique of SANS (small angle neutron scattering) furnishes unique information on the characteristic magnetic length scales and local magnetic anisotropies at the nanoscale in nanocomposite ferromagnets. Such information is not presently available using any other microscopic technique. The basic principles and results of the technique will be presented with regard to a unique and unexpected observation of a dipole field controlled spin disorder in a prototypical soft nanocomposite ferromagnet of the Nanoperm type. [less ▲]

Detailed reference viewed: 92 (2 UL)
Full Text
Peer Reviewed
See detailA neutron-scattering investigation of the magnetic structure and magnetic excitations in nanocrystalline Tb
Vecchini, C.; Moze, O.; Hoser, A. et al

in Journal of Applied Physics (2006), 99(8), 5021-5023

The magnetic structure and magnetic excitations in nanocrystalline Tb have been investigated by neutron diffraction and neutron spectroscopy. This is a report on the long-range magnetic order and the ... [more ▼]

The magnetic structure and magnetic excitations in nanocrystalline Tb have been investigated by neutron diffraction and neutron spectroscopy. This is a report on the long-range magnetic order and the magnetic excitations in a nanocrystalline elemental rare earth. Refinement of the neutron-diffraction data reveals an “average” magnetic structure of each crystallite which contains a significant out-of-plane component to the magnetic moment as well as a suppression of the high-temperature antiferromagnetic phase observed for coarse-grained Tb. The inelastic-neutron-scattering measurements reveal the presence of a magnetic excitation of approximately 10 meV at 2.5 K. The excitation energy decreases with increasing temperature. The origins of this excitation are discussed with particular reference to the magnetic modes at the zone center observed for single-crystal Tb. [less ▲]

Detailed reference viewed: 121 (0 UL)
Full Text
Peer Reviewed
See detailDipolar correlations in a nanocomposite: A neutron scattering study of Nanoperm Fe89Zr7B3Cu
Michels, Andreas UL; Vecchini, C.; Moze, O. et al

in Physical Review. B, Condensed Matter and Materials Physics (2006), 74(13), 1344071-13440713

We present results for the magnetic-field, temperature, and neutron-polarization dependence of the small-angle neutron scattering intensity in the soft magnetic iron-based nanocomposite Nanoperm ... [more ▼]

We present results for the magnetic-field, temperature, and neutron-polarization dependence of the small-angle neutron scattering intensity in the soft magnetic iron-based nanocomposite Nanoperm (Fe89Zr7B3Cu). An unusual “clover-leaf-shaped” intensity distribution on the detector is attributed to the dipolar stray fields around the nanosized iron particles, which are embedded in an amorphous magnetic matrix of lesser saturation magnetization. The dipole field induces spin disorder, correlating the spin misalignment of neighboring particles and matrix over several particle spacings. The clover-leaf-shaped anisotropy is observed over a wide range of applied magnetic field and momentum transfer. It persists up to several hundred degrees Kelvin above the Curie temperature of the matrix phase, indicating that some degree of magnetic coupling persists even when the matrix is paramagnetic. [less ▲]

Detailed reference viewed: 109 (4 UL)
Full Text
Peer Reviewed
See detailDipole-field-induced spin disorder in a nanocomposite soft magnet
Michels, Andreas UL; Vecchini, C.; Moze, O. et al

in Europhysics Letters (2005), 72(2), 249-255

We report on a study of a magnetic nanocomposite of the Nanoperm type (Fe89Zr7B3Cu1) by magnetic small-angle neutron scattering (SANS). The understanding of the magnetic microstructure of these materials ... [more ▼]

We report on a study of a magnetic nanocomposite of the Nanoperm type (Fe89Zr7B3Cu1) by magnetic small-angle neutron scattering (SANS). The understanding of the magnetic microstructure of these materials leaves much to be desired since we lack techniques capable of resolving the spin structure in the bulk with nanoscale resolution. Here, we present an analysis of the SANS signal by which one cannot only characterise the nanoscale structure of the spin system, but which allows to identify origin and structure of the perturbing field. In Nanoperm, an unusual angular anisotropy of the scattering suggests that the local spin misalignment decorates, as the most important perturbing field, dipole stray fields around the crystalline phase of the composite. [less ▲]

Detailed reference viewed: 88 (1 UL)
Full Text
Peer Reviewed
See detailNeutron scattering and modeling of dipole-field-induced spin disorder in Nanoperm
Vecchini, C.; Moze, O.; Suzuki, K. et al

in Applied Physics Letters (2005), 87

We present magnetic-field-dependent small-angle neutron scattering data for the ferromagnetic nanocomposite Nanoperm (Fe89Zr7B3Cu1). The spin-misalignment scattering in the approach-to-saturation regime ... [more ▼]

We present magnetic-field-dependent small-angle neutron scattering data for the ferromagnetic nanocomposite Nanoperm (Fe89Zr7B3Cu1). The spin-misalignment scattering in the approach-to-saturation regime unexpectedly reveals pronounced lobes of high intensity at angles ±30−40° relative to the magnetic-field axis. Based on numerical calculations, the four-fold angular symmetry of the scattering pattern can be explained in terms of local spin misalignment, which originates from dipolar stray fields due to the mismatch of the saturation-magnetization values between the bcc Fe particles and the amorphous magnetic matrix. [less ▲]

Detailed reference viewed: 108 (2 UL)