References of "Mouchiroud, Laurent"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailTwo Conserved Histone Demethylases Regulate Mitochondrial Stress-Induced Longevity.
Merkwirth, Carsten; Jovaisaite, Virginija; Durieux, Jenni et al

in Cell (2016), 165(5), 1209-1223

Across eukaryotic species, mild mitochondrial stress can have beneficial effects on the lifespan of organisms. Mitochondrial dysfunction activates an unfolded protein response (UPR(mt)), a stress ... [more ▼]

Across eukaryotic species, mild mitochondrial stress can have beneficial effects on the lifespan of organisms. Mitochondrial dysfunction activates an unfolded protein response (UPR(mt)), a stress signaling mechanism designed to ensure mitochondrial homeostasis. Perturbation of mitochondria during larval development in C. elegans not only delays aging but also maintains UPR(mt) signaling, suggesting an epigenetic mechanism that modulates both longevity and mitochondrial proteostasis throughout life. We identify the conserved histone lysine demethylases jmjd-1.2/PHF8 and jmjd-3.1/JMJD3 as positive regulators of lifespan in response to mitochondrial dysfunction across species. Reduction of function of the demethylases potently suppresses longevity and UPR(mt) induction, while gain of function is sufficient to extend lifespan in a UPR(mt)-dependent manner. A systems genetics approach in the BXD mouse reference population further indicates conserved roles of the mammalian orthologs in longevity and UPR(mt) signaling. These findings illustrate an evolutionary conserved epigenetic mechanism that determines the rate of aging downstream of mitochondrial perturbations. [less ▲]

Detailed reference viewed: 42 (0 UL)
Full Text
Peer Reviewed
See detailThe Movement Tracker: A Flexible System for Automated Movement Analysis in Invertebrate Model Organisms.
Mouchiroud, Laurent; Sorrentino, Vincenzo; Williams, Evan UL et al

in Current protocols in neuroscience (2016), 77

Phenotyping strategies in simple model organisms such as D. melanogaster and C. elegans are often broadly limited to growth, aging, and fitness. Recently, a number of physical setups and video tracking ... [more ▼]

Phenotyping strategies in simple model organisms such as D. melanogaster and C. elegans are often broadly limited to growth, aging, and fitness. Recently, a number of physical setups and video tracking software suites have been developed to allow for accurate, quantitative, and high-throughput analysis of movement in flies and worms. However, many of these systems require precise experimental setups and/or fixed recording formats. We report here an update to the Parallel Worm Tracker software, which we termed the Movement Tracker. The Movement Tracker allows variable experimental setups to provide cross-platform automated processing of a variety of movement characteristics in both worms and flies and permits the use of simple physical setups that can be readily implemented in any laboratory. This software allows high-throughput processing capabilities and high levels of flexibility in video analysis, providing quantitative movement data on C. elegans and D. melanogaster in a variety of different conditions. (c) 2016 by John Wiley & Sons, Inc. [less ▲]

Detailed reference viewed: 49 (0 UL)
Full Text
Peer Reviewed
See detailUrolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents.
Ryu, Dongryeol; Mouchiroud, Laurent; Andreux, Penelope A. et al

in Nature medicine (2016), 22(8), 879-88

The biological effects of urolithins remain poorly characterized, despite wide-spread human exposure via the dietary consumption of their metabolic precursors, the ellagitannins, which are found in the ... [more ▼]

The biological effects of urolithins remain poorly characterized, despite wide-spread human exposure via the dietary consumption of their metabolic precursors, the ellagitannins, which are found in the pomegranate fruit, as well as in nuts and berries. We identified urolithin A (UA) as a first-in-class natural compound that induces mitophagy both in vitro and in vivo following oral consumption. In C. elegans, UA prevented the accumulation of dysfunctional mitochondria with age and extended lifespan. Likewise, UA prolonged normal activity during aging in C. elegans, including mobility and pharyngeal pumping, while maintaining mitochondrial respiratory capacity. These effects translated to rodents, where UA improved exercise capacity in two different mouse models of age-related decline of muscle function, as well as in young rats. Our findings highlight the health benefits of urolithin A and its potential application in strategies to improve mitochondrial and muscle function. [less ▲]

Detailed reference viewed: 40 (0 UL)
Full Text
Peer Reviewed
See detailTetracyclines Disturb Mitochondrial Function across Eukaryotic Models: A Call for Caution in Biomedical Research.
Moullan, Norman; Mouchiroud, Laurent; Wang, Xu et al

in Cell reports (2015), 10(10), 1681-1691

In recent years, tetracyclines, such as doxycycline, have become broadly used to control gene expression by virtue of the Tet-on/Tet-off systems. However, the wide range of direct effects of tetracycline ... [more ▼]

In recent years, tetracyclines, such as doxycycline, have become broadly used to control gene expression by virtue of the Tet-on/Tet-off systems. However, the wide range of direct effects of tetracycline use has not been fully appreciated. We show here that these antibiotics induce a mitonuclear protein imbalance through their effects on mitochondrial translation, an effect that likely reflects the evolutionary relationship between mitochondria and proteobacteria. Even at low concentrations, tetracyclines induce mitochondrial proteotoxic stress, leading to changes in nuclear gene expression and altered mitochondrial dynamics and function in commonly used cell types, as well as worms, flies, mice, and plants. Given that tetracyclines are so widely applied in research, scientists should be aware of their potentially confounding effects on experimental results. Furthermore, these results caution against extensive use of tetracyclines in livestock due to potential downstream impacts on the environment and human health. [less ▲]

Detailed reference viewed: 39 (0 UL)
Full Text
Peer Reviewed
See detailAn evolutionarily conserved role for the aryl hydrocarbon receptor in the regulation of movement.
Williams, Evan UL; Mouchiroud, Laurent; Frochaux, Michael et al

in PLoS genetics (2014), 10(9), 1004673

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants ... [more ▼]

The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some of these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. Here we phenotype 43 BXD strains and observe they have large variation (-5-fold) in their spontaneous activity during waking hours. QTL analyses indicate that -40% of this variance is attributable to a narrow locus containing the aryl hydrocarbon receptor (Ahr), a basic helix-loop-helix transcription factor with well-established roles in development and xenobiotic metabolism. Strains with the D2 allele of Ahr have reduced gene expression compared to those with the B6 allele, and have significantly higher spontaneous activity. This effect was also observed in B6 mice with a congenic D2 Ahr interval, and in B6 mice with a humanized AHR allele which, like the D2 allele, is expressed much less and has less enzymatic activity than the B6 allele. Ahr is highly conserved in invertebrates, and strikingly inhibition of its orthologs in D. melanogaster and C. elegans (spineless and ahr-1) leads to marked increases in basal activity. In mammals, Ahr has numerous ligands, but most are either non-selective (e.g. resveratrol) or highly toxic (e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)). Thus, we chose to examine a major environmental influence--long term feeding with high fat diet (HFD)--to see if the effects of Ahr are dependent on major metabolic differences. Interestingly, while HFD robustly halved movement across all strains, the QTL position and effects of Ahr remained unchanged, indicating that the effects are independent. The highly consistent effects of Ahr on movement indicate that changes in its constitutive activity have a role on spontaneous movement and may influence human behavior. [less ▲]

Detailed reference viewed: 40 (0 UL)
Full Text
Peer Reviewed
See detailPharmacological Inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle.
Pirinen, Eija; Canto, Carles; Jo, Young Suk et al

in Cell metabolism (2014), 19(6), 1034-41

We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the ... [more ▼]

We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show tight negative correlation between Parp-1 expression and energy expenditure in heterogeneous mouse populations, indicating that variations in PARP-1 activity have an impact on metabolic homeostasis. Notably, these genetic correlations can be translated into pharmacological applications. Long-term treatment with PARP inhibitors enhances fitness in mice by increasing the abundance of mitochondrial respiratory complexes and boosting mitochondrial respiratory capacity. Furthermore, PARP inhibitors reverse mitochondrial defects in primary myotubes of obese humans and attenuate genetic defects of mitochondrial metabolism in human fibroblasts and C. elegans. Overall, our work validates in worm, mouse, and human models that PARP inhibition may be used to treat both genetic and acquired muscle dysfunction linked to defective mitochondrial function. [less ▲]

Detailed reference viewed: 45 (0 UL)
Full Text
Peer Reviewed
See detailNCoR1 is a conserved physiological modulator of muscle mass and oxidative function.
Yamamoto, Hiroyasu; Williams, Evan UL; Mouchiroud, Laurent et al

in Cell (2011), 147(4), 827-39

Transcriptional coregulators control the activity of many transcription factors and are thought to have wide-ranging effects on gene expression patterns. We show here that muscle-specific loss of nuclear ... [more ▼]

Transcriptional coregulators control the activity of many transcription factors and are thought to have wide-ranging effects on gene expression patterns. We show here that muscle-specific loss of nuclear receptor corepressor 1 (NCoR1) in mice leads to enhanced exercise endurance due to an increase of both muscle mass and of mitochondrial number and activity. The activation of selected transcription factors that control muscle function, such as MEF2, PPARbeta/delta, and ERRs, underpins these phenotypic alterations. NCoR1 levels are decreased in conditions that require fat oxidation, resetting transcriptional programs to boost oxidative metabolism. Knockdown of gei-8, the sole C. elegans NCoR homolog, also robustly increased muscle mitochondria and respiration, suggesting conservation of NCoR1 function. Collectively, our data suggest that NCoR1 plays an adaptive role in muscle physiology and that interference with NCoR1 action could be used to improve muscle function. [less ▲]

Detailed reference viewed: 44 (1 UL)