References of "Moritz, Soren"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailDerivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling.
Reinhardt, Peter; Glatza, Michael; Hemmer, Kathrin et al

in PLoS ONE (2013), 8(3), 59252

Phenotypic drug discovery requires billions of cells for high-throughput screening (HTS) campaigns. Because up to several million different small molecules will be tested in a single HTS campaign, even ... [more ▼]

Phenotypic drug discovery requires billions of cells for high-throughput screening (HTS) campaigns. Because up to several million different small molecules will be tested in a single HTS campaign, even small variability within the cell populations for screening could easily invalidate an entire campaign. Neurodegenerative assays are particularly challenging because neurons are post-mitotic and cannot be expanded for implementation in HTS. Therefore, HTS for neuroprotective compounds requires a cell type that is robustly expandable and able to differentiate into all of the neuronal subtypes involved in disease pathogenesis. Here, we report the derivation and propagation using only small molecules of human neural progenitor cells (small molecule neural precursor cells; smNPCs). smNPCs are robust, exhibit immortal expansion, and do not require cumbersome manual culture and selection steps. We demonstrate that smNPCs have the potential to clonally and efficiently differentiate into neural tube lineages, including motor neurons (MNs) and midbrain dopaminergic neurons (mDANs) as well as neural crest lineages, including peripheral neurons and mesenchymal cells. These properties are so far only matched by pluripotent stem cells. Finally, to demonstrate the usefulness of smNPCs we show that mDANs differentiated from smNPCs with LRRK2 G2019S are more susceptible to apoptosis in the presence of oxidative stress compared to wild-type. Therefore, smNPCs are a powerful biological tool with properties that are optimal for large-scale disease modeling, phenotypic screening, and studies of early human development. [less ▲]

Detailed reference viewed: 213 (8 UL)
Full Text
Peer Reviewed
See detailDirect reprogramming of fibroblasts into neural stem cells by defined factors.
Han, Dong Wook; Tapia, Natalia; Hermann, Andreas et al

in Cell Stem Cell (2012), 10(4), 465-72

Recent studies have shown that defined sets of transcription factors can directly reprogram differentiated somatic cells to a different differentiated cell type without passing through a pluripotent state ... [more ▼]

Recent studies have shown that defined sets of transcription factors can directly reprogram differentiated somatic cells to a different differentiated cell type without passing through a pluripotent state, but the restricted proliferative and lineage potential of the resulting cells limits the scope of their potential applications. Here we show that a combination of transcription factors (Brn4/Pou3f4, Sox2, Klf4, c-Myc, plus E47/Tcf3) induces mouse fibroblasts to directly acquire a neural stem cell identity-which we term as induced neural stem cells (iNSCs). Direct reprogramming of fibroblasts into iNSCs is a gradual process in which the donor transcriptional program is silenced over time. iNSCs exhibit cell morphology, gene expression, epigenetic features, differentiation potential, and self-renewing capacity, as well as in vitro and in vivo functionality similar to those of wild-type NSCs. We conclude that differentiated cells can be reprogrammed directly into specific somatic stem cell types by defined sets of specific transcription factors. [less ▲]

Detailed reference viewed: 255 (19 UL)