References of "Mittelbronn, Michel 50026633"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailParkin Deficiency Impairs Mitochondrial DNA Dynamics and Propagates Inflammation.
Wasner, Kobi; Smajic, Semra UL; Ghelfi, Jenny UL et al

in Movement disorders : official journal of the Movement Disorder Society (2022)

BACKGROUND: Mutations in the E3 ubiquitin ligase parkin cause autosomal recessive Parkinson's disease (PD). Together with PTEN-induced kinase 1 (PINK1), parkin regulates the clearance of dysfunctional ... [more ▼]

BACKGROUND: Mutations in the E3 ubiquitin ligase parkin cause autosomal recessive Parkinson's disease (PD). Together with PTEN-induced kinase 1 (PINK1), parkin regulates the clearance of dysfunctional mitochondria. New mitochondria are generated through an interplay of nuclear- and mitochondrial-encoded proteins, and recent studies suggest that parkin influences this process at both levels. In addition, parkin was shown to prevent mitochondrial membrane permeability, impeding mitochondrial DNA (mtDNA) escape and subsequent neuroinflammation. However, parkin's regulatory roles independent of mitophagy are not well described in patient-derived neurons. OBJECTIVES: We sought to investigate parkin's role in preventing neuronal mtDNA dyshomeostasis, release, and glial activation at the endogenous level. METHODS: We generated induced pluripotent stem cell (iPSC)-derived midbrain neurons from PD patients with parkin (PRKN) mutations and healthy controls. Live-cell imaging, proteomic, mtDNA integrity, and gene expression analyses were employed to investigate mitochondrial biogenesis and genome maintenance. To assess neuroinflammation, we performed single-nuclei RNA sequencing in postmortem tissue and quantified interleukin expression in mtDNA/lipopolysaccharides (LPS)-treated iPSC-derived neuron-microglia co-cultures. RESULTS: Neurons from patients with PRKN mutations revealed deficits in the mitochondrial biogenesis pathway, resulting in mtDNA dyshomeostasis. Moreover, the energy sensor sirtuin 1, which controls mitochondrial biogenesis and clearance, was downregulated in parkin-deficient cells. Linking mtDNA disintegration to neuroinflammation, in postmortem midbrain with PRKN mutations, we confirmed mtDNA dyshomeostasis and detected an upregulation of microglia overexpressing proinflammatory cytokines. Finally, parkin-deficient neuron-microglia co-cultures elicited an enhanced immune response when exposed to mtDNA/LPS. CONCLUSIONS: Our findings suggest that parkin coregulates mitophagy, mitochondrial biogenesis, and mtDNA maintenance pathways, thereby protecting midbrain neurons from neuroinflammation and degeneration. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. [less ▲]

Detailed reference viewed: 98 (7 UL)
Full Text
Peer Reviewed
See detailNeurodegeneration and neuroinflammation are linked, but independent of a-synuclein inclusions, in a seeding/spreading mouse model of Parkinson's disease
Garcia, Pierre UL; Wemheuer, W.; Uriarte, O. et al

in Glia (2022)

A key pathological process in Parkinson's disease (PD) is the transneuronal spreading of α-synuclein. Alpha-synuclein (α-syn) is a presynaptic protein that, in PD, forms pathological inclusions. Other ... [more ▼]

A key pathological process in Parkinson's disease (PD) is the transneuronal spreading of α-synuclein. Alpha-synuclein (α-syn) is a presynaptic protein that, in PD, forms pathological inclusions. Other hallmarks of PD include neurodegeneration and microgliosis in susceptible brain regions. Whether it is primarily transneuronal spreading of α-syn particles, inclusion formation, or other mechanisms, such as inflammation, that cause neurodegeneration in PD is unclear. We used a model of spreading of α-syn induced by striatal injection of α-syn preformed fibrils into the mouse striatum to address this question. We performed quantitative analysis for α-syn inclusions, neurodegeneration, and microgliosis in different brain regions, and generated gene expression profiles of the ventral midbrain, at two different timepoints after disease induction. We observed significant neurodegeneration and microgliosis in brain regions not only with, but also without α-syn inclusions. We also observed prominent microgliosis in injured brain regions that did not correlate with neurodegeneration nor with inclusion load. Using longitudinal gene expression profiling, we observed early gene expression changes, linked to neuroinflammation, that preceded neurodegeneration, indicating an active role of microglia in this process. Altered gene pathways overlapped with those typical of PD. Our observations indicate that α-syn inclusion formation is not the major driver in the early phases of PD-like neurodegeneration, but that microglia, activated by diffusible, oligomeric α-syn, may play a key role in this process. Our findings uncover new features of α-syn induced pathologies, in particular microgliosis, and point to the necessity for a broader view of the process of α-syn spreading. [less ▲]

Detailed reference viewed: 109 (17 UL)
Full Text
Peer Reviewed
See detailMicroglia phenotypes are associated with subregional patterns of concomitant tau, amyloid-β and α-synuclein pathologies in the hippocampus of patients with Alzheimer’s disease and dementia with Lewy bodies
Fixemer, Sonja UL; Ameli, Corrado UL; Hammer, Gaël et al

in Acta Neuropathologica Communications (2022), 10(1), 36

The cellular alterations of the hippocampus lead to memory decline, a shared symptom between Alzheimer’s disease (AD) and dementia with Lewy Bodies (DLB) patients. However, the subregional deterioration ... [more ▼]

The cellular alterations of the hippocampus lead to memory decline, a shared symptom between Alzheimer’s disease (AD) and dementia with Lewy Bodies (DLB) patients. However, the subregional deterioration pattern of the hippocampus differs between AD and DLB with the CA1 subfield being more severely affected in AD. The activation of microglia, the brain immune cells, could play a role in its selective volume loss. How subregional microglia populations vary within AD or DLB and across these conditions remains poorly understood. Furthermore, how the nature of the hippocampal local pathological imprint is associated with microglia responses needs to be elucidated. To this purpose, we employed an automated pipeline for analysis of 3D confocal microscopy images to assess CA1, CA3 and DG/CA4 subfields microglia responses in post-mortem hippocampal samples from late-onset AD (n = 10), DLB (n = 8) and age-matched control (CTL) (n = 11) individuals. In parallel, we performed volumetric analyses of hyperphosphorylated tau (pTau), amyloid-β (Aβ) and phosphorylated α-synuclein (pSyn) loads. For each of the 32,447 extracted microglia, 16 morphological features were measured to classify them into seven distinct morphological clusters. Our results show similar alterations of microglial morphological features and clusters in AD and DLB, but with more prominent changes in AD. We identified two distinct microglia clusters enriched in disease conditions and particularly increased in CA1 and DG/CA4 of AD and CA3 of DLB. Our study confirms frequent concomitance of pTau, Aβ and pSyn loads across AD and DLB but reveals a specific subregional pattern for each type of pathology, along with a generally increased severity in AD. Furthermore, pTau and pSyn loads were highly correlated across subregions and conditions. We uncovered tight associations between microglial changes and the subfield pathological imprint. Our findings suggest that combinations and severity of subregional pTau, Aβ and pSyn pathologies transform local microglia phenotypic composition in the hippocampus. The high burdens of pTau and pSyn associated with increased microglial alterations could be a factor in CA1 vulnerability in AD. [less ▲]

Detailed reference viewed: 42 (1 UL)
Full Text
Peer Reviewed
See detailApplication of Raman Spectroscopy for Detection of Histologically Distinct Areas in Formalin-fixed Paraffin-embedded (FFPE) Glioblastoma
Klamminger, Gilbert Georg; Gerardy, Jean-Jacques UL; Jelke, Finn et al

in Neuro-Oncology Advances (2021)

Background Although microscopic assessment is still the diagnostic gold standard in pathology, non-light microscopic methods such as new imaging methods and molecular pathology have considerably ... [more ▼]

Background Although microscopic assessment is still the diagnostic gold standard in pathology, non-light microscopic methods such as new imaging methods and molecular pathology have considerably contributed to more precise diagnostics. As an upcoming method, Raman spectroscopy (RS) offers a "molecular fingerprint" which could be used to differentiate tissue heterogeneity or diagnostic entities. RS has been successfully applied on fresh and frozen tissue, however more aggressively, chemically treated tissue such as formalin-fixed, paraffin-embedded (FFPE) samples are challenging for RS. Methods To address this issue, we examined FFPE samples of morphologically highly heterogeneous glioblastoma (GBM) using RS in order to classify histologically defined GBM areas according to RS spectral properties. We have set up a SVM (support vector machine)-based classifier in a training cohort and corroborated our findings in a validation cohort. Results Our trained classifier identified distinct histological areas such as tumor core and necroses in GBM with an overall accuracy of 70.5% based on spectral properties of RS. With an absolute misclassification of 21 out of 471 Raman measurements, our classifier has the property of precisely distinguishing between normal appearing brain tissue and necrosis. When verifying the suitability of our classifier system in a second independent dataset, very little overlap between necrosis and normal appearing brain tissue can be detected. Conclusion These findings show that histologically highly variable samples such as GBM can be reliably recognized by their spectral properties using RS. As a conclusion, we propose that RS may serve useful as a future method in the pathological toolbox. [less ▲]

Detailed reference viewed: 76 (1 UL)
Full Text
Peer Reviewed
See detailIntraoperative discrimination of native meningioma and dura mater by Raman spectroscopy
Jelke, Finn; Mirizzi, Giulia; Borgmann, Felix Kleine et al

in Scientific Reports (2021)

Detailed reference viewed: 53 (5 UL)
Full Text
Peer Reviewed
See detailDifferentiation of primary CNS lymphoma and glioblastoma using Raman spectroscopy and machine learning algorithms
Klamminger, Gilbert Georg; Klein, Karoline; Mombaerts, Laurent UL et al

in Free Neuropathology (2021), 2

Objective and Methods: Timely discrimination between primary CNS lymphoma (PCNSL) and glioblastoma is crucial for diagnostics and therapy, but most importantly also determines the intraoperative surgical ... [more ▼]

Objective and Methods: Timely discrimination between primary CNS lymphoma (PCNSL) and glioblastoma is crucial for diagnostics and therapy, but most importantly also determines the intraoperative surgical course. Advanced radiological methods allow this to a certain extent but ultimately, biopsy is still necessary for final diagnosis. As an upcoming method that enables tissue analysis by tracking changes in the vibrational state of molecules via inelastic scattered photons, we used Raman Spectroscopy (RS) as a label free method to examine specimens of both tumor entities intraoperatively, as well as postoperatively in formalin fixed paraffin embedded (FFPE) samples. Results: We applied and compared statistical performance of linear and nonlinear machine learning algorithms (Logistic Regression, Random Forest and XGBoost), and found that Random Forest classification distinguished the two tumor entities with a balanced accuracy of 82,4% in intraoperative tissue condition and with 94% using measurements of distinct tumor areas on FFPE tissue. Taking a deeper insight into the spectral properties of the tumor entities, we describe different tumor-specific Raman shifts of interest for classification. Conclusions: Due to our findings, we propose RS as an additional tool for fast and non-destructive, perioperative tumor tissue discrimination, which may augment treatment options at an early stage. RS may further serve as a useful additional tool for neuropathological diagnostics with little requirements for tissue integrity. [less ▲]

Detailed reference viewed: 54 (3 UL)
Full Text
Peer Reviewed
See detailPatient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology.
Golebiewska, Anna UL; Hau, Ann-Christin; Oudin, Anaïs et al

in Acta Neuropathologica (2020)

Patient-based cancer models are essential tools for studying tumor biology and for the assessment of drug responses in a translational context. We report the establishment a large cohort of unique ... [more ▼]

Patient-based cancer models are essential tools for studying tumor biology and for the assessment of drug responses in a translational context. We report the establishment a large cohort of unique organoids and patient-derived orthotopic xenografts (PDOX) of various glioma subtypes, including gliomas with mutations in IDH1, and paired longitudinal PDOX from primary and recurrent tumors of the same patient. We show that glioma PDOXs enable long-term propagation of patient tumors and represent clinically relevant patient avatars that retain histopathological, genetic, epigenetic, and transcriptomic features of parental tumors. We find no evidence of mouse-specific clonal evolution in glioma PDOXs. Our cohort captures individual molecular genotypes for precision medicine including mutations in IDH1, ATRX, TP53, MDM2/4, amplification of EGFR, PDGFRA, MET, CDK4/6, MDM2/4, and deletion of CDKN2A/B, PTCH, and PTEN. Matched longitudinal PDOX recapitulate the limited genetic evolution of gliomas observed in patients following treatment. At the histological level, we observe increased vascularization in the rat host as compared to mice. PDOX-derived standardized glioma organoids are amenable to high-throughput drug screens that can be validated in mice. We show clinically relevant responses to temozolomide (TMZ) and to targeted treatments, such as EGFR and CDK4/6 inhibitors in (epi)genetically defined subgroups, according to MGMT promoter and EGFR/CDK status, respectively. Dianhydrogalactitol (VAL-083), a promising bifunctional alkylating agent in the current clinical trial, displayed high therapeutic efficacy, and was able to overcome TMZ resistance in glioblastoma. Our work underscores the clinical relevance of glioma organoids and PDOX models for translational research and personalized treatment studies and represents a unique publicly available resource for precision oncology. [less ▲]

Detailed reference viewed: 171 (15 UL)
Full Text
Peer Reviewed
See detailPituitary Tumor Transforming Gene 1 Orchestrates Gene Regulatory Variation in Mouse Ventral Midbrain During Aging
Gui, Yujuan UL; Thomas, Mélanie H.; Garcia, Pierre et al

in Frontiers in Genetics (2020)

Dopaminergic neurons in the midbrain are of particular interest due to their role in diseases such as Parkinson’s disease and schizophrenia. Genetic variation between individuals can affect the integrity ... [more ▼]

Dopaminergic neurons in the midbrain are of particular interest due to their role in diseases such as Parkinson’s disease and schizophrenia. Genetic variation between individuals can affect the integrity and function of dopaminergic neurons but the DNA variants and molecular cascades modulating dopaminergic neurons and other cells types of ventral midbrain remain poorly defined. Three genetically diverse inbred mouse strains – C57BL/6J, A/J, and DBA/2J – differ significantly in their genomes (∼7 million variants), motor and cognitive behavior, and susceptibility to neurotoxins. To further dissect the underlying molecular networks responsible for these variable phenotypes, we generated RNA-seq and ChIP-seq data from ventral midbrains of the 3 mouse strains. We defined 1000–1200 transcripts that are differentially expressed among them. These widespread differences may be due to altered activity or expression of upstream transcription factors. Interestingly, transcription factors were significantly underrepresented among the differentially expressed genes, and only one transcription factor, Pttg1, showed significant differences between all three strains. The changes in Pttg1 expression were accompanied by consistent alterations in histone H3 lysine 4 trimethylation at Pttg1 transcription start site. The ventral midbrain transcriptome of 3-month-old C57BL/6J congenic Pttg1–/– mutants was only modestly altered, but shifted toward that of A/J and DBA/2J in 9-month-old mice. Principle component analysis (PCA) identified the genes underlying the transcriptome shift and deconvolution of these bulk RNA-seq changes using midbrain single cell RNA-seq data suggested that the changes were occurring in several different cell types, including neurons, oligodendrocytes, and astrocytes. Taken together, our results show that Pttg1 contributes to gene regulatory variation between mouse strains and influences mouse midbrain transcriptome during aging. [less ▲]

Detailed reference viewed: 140 (22 UL)
Full Text
Peer Reviewed
See detailPrimary and recurrent glioma patient-derived orthotopic xenografts (PDOX) represent relevant patient avatars for precision medicine
Golebiewska, Anna UL; Hau, Ann-Christin; Oudin, Anais et al

E-print/Working paper (2020)

Patient-derived cancer models are essential tools for studying tumor biology and preclinical interventions. Here, we show that glioma patient-derived orthotopic xenografts (PDOXs) enable long-term ... [more ▼]

Patient-derived cancer models are essential tools for studying tumor biology and preclinical interventions. Here, we show that glioma patient-derived orthotopic xenografts (PDOXs) enable long-term propagation of patient tumors and represent clinically relevant patient avatars. We created a large collection of PDOXs from primary and recurrent gliomas with and without mutations in IDH1, which retained histopathological, genetic, epigenetic and transcriptomic features of patient tumors with no mouse-specific clonal evolution. Longitudinal PDOX models recapitulate the limited genetic evolution of gliomas observed in patient tumors following treatment. PDOX-derived standardized tumor organoid cultures enabled assessment of drug responses, which were validated in mice. PDOXs showed clinically relevant responses to Temozolomide and to targeted treatments such as EGFR and CDK4/6 inhibitors in (epi)genetically defined groups, according to MGMT promoter and EGFR/CDK status respectively. Dianhydrogalactitol, a bifunctional alkylating agent, showed promising potential against glioblastoma. Our study underlines the clinical relevance of glioma PDOX models for translational research and personalized treatment studies. [less ▲]

Detailed reference viewed: 140 (6 UL)
Full Text
Peer Reviewed
See detailHypoxia-induced Autophagy Drives Colorectal Cancer Initiation and Progression by Activating the PRKC/PKC-EZR (Ezrin) Pathway
Qureshi-Baig, Komal; Kuhn; Viry, Elodie et al

in Autophagy (2019)

In solid tumors, cancer stem cells (CSCs) or tumor-initiating cells (TICs) are often found in hypoxic niches. Nevertheless, the influence of hypoxia on TICs is poorly understood. Using previously ... [more ▼]

In solid tumors, cancer stem cells (CSCs) or tumor-initiating cells (TICs) are often found in hypoxic niches. Nevertheless, the influence of hypoxia on TICs is poorly understood. Using previously established, TIC-enriched patient-derived colorectal cancer (CRC) cultures, we show that hypoxia increases the self-renewal capacity of TICs while inducing proliferation arrest in their more differentiated counterpart cultures. Gene expression data revealed macroautophagy/autophagy as one of the major pathways induced by hypoxia in TICs. Interestingly, hypoxia-induced autophagy was found to induce phosphorylation of EZR (ezrin) at Thr567 residue, which could be reversed by knocking down ATG5, BNIP3, BNIP3L, or BECN1. Furthermore, we identified PRKCA/PKCα as a potential kinase involved in hypoxia-induced autophagy-mediated TIC self-renewal. Genetic targeting of autophagy or pharmacological inhibition of PRKC/PKC and EZR resulted in decreased tumor-initiating potential of TICs. In addition, we observed significantly reduced in vivo tumor initiation and growth after a stable knockdown of ATG5. Analysis of human CRC samples showed that p-EZR is often present in TICs located in the hypoxic and autophagic regions of the tumor. Altogether, our results establish the hypoxia-autophagy-PKC-EZR signaling axis as a novel regulatory mechanism of TIC self-renewal and CRC progression. Autophagy inhibition might thus represent a promising therapeutic strategy for cancer patients. [less ▲]

Detailed reference viewed: 202 (15 UL)
Peer Reviewed
See detailPATH-29. POTENTIAL OF RAMAN SPECTROSCOPY IN ONCOLOGICAL NEUROSURGERY
Kleine Borgmann, Felix; Husch, Andreas UL; Slimani, Redouane et al

Poster (2019)

Raman spectroscopy (RS) has gained increasing interest for the analysis of biological tissues within the recent years. It is a label-free, non-destructive method providing insights in biochemical ... [more ▼]

Raman spectroscopy (RS) has gained increasing interest for the analysis of biological tissues within the recent years. It is a label-free, non-destructive method providing insights in biochemical properties of tumor cells. It is possible to compare RS signals with histological properties of identical tissue parts. Therefore, RS bears promising potentials in neurosurgical neurooncology. On one hand, it could potentially be used for both intraoperative tumor diagnostics and resection control. On the other hand, it could provide important knowledge on tumor biochemistry and used for a subclassification of tumors with a potential impact on personalized therapy approaches. Within our group, we analyzed over 3000 measurement points in different brain tumors ex vivo with a robotized RS system and correlated the spectral curves with histopathological results. We separated and subclassified the data by AI-based methods. Additionally, we compared the latter results with those of a handheld probe, which is potentially navigatable for in vivo, intraoperative applications. We could demonstrate, that it is possible to separate distinct tumor groups only based on RS signals, especially by using computer-based signal analysis. Furthermore, we could demonstrate the differences of the spectra of deep-frozen and formalin-fixed tissues versus non-fixed tissues. Based on our results, we will highlight the potentials of RS for intraoperative neurosurgical application in resection control for brain tumors, as well as we will focus on the potentials for brain tumor diagnostics based purely on this method or by using it as an adjunct. Those methods bear additional potentials in the field of personalized chemotherapy approaches. [less ▲]

Detailed reference viewed: 113 (3 UL)