References of "Milesi-Brault, Cosme 0171115339"
     in
Bookmark and Share    
Full Text
See detailOld and New Antiferroelectrics: Experimental Studies of Phase Transitions in Model Materials
Milesi-Brault, Cosme UL

Doctoral thesis (2021)

Antiferroelectrics are a subcategory of ferroic materials that display no spontaneous polarisation due to antiparallel ionic displacements. These materials undergo an electric field-induced transition to ... [more ▼]

Antiferroelectrics are a subcategory of ferroic materials that display no spontaneous polarisation due to antiparallel ionic displacements. These materials undergo an electric field-induced transition to a polar phase accompanied by the emergence of a spontaneous polarisation. As for ferroelectrics, heating up an antiferroelectric material above a certain temperature Tc will cause another phase transition towards a paraelectric phase. Antiferroelectricity is currently the subject of a renewed interest, mostly due to a rising need of new smart materials for applications such as energy storage, electrocaloric cooling or microelectronics. The most-studied antiferroelectric is lead zirconate PbZrO3perovskite. However, the understanding of its switching mechanism is still incomplete. In this work, we will first present our study on the sol-gel synthesis and characterisation of antiferroelectric polycrystalline thin films of canonical lead zirconate PbZrO3. We will notably highlight the realisation of an in-plane switching of our antiferroelectric samples grown on transparent substrates, as well as the optical observation of this switching through birefringence changes. On a more fundamental side, the oldest and best-known model of antiferroelectricity was defined by Kittel in 1951. No real unidimensional Kittel-like model material has, to our knowledge, been identified yet. We will detail our spectroscopic study of the lattice dynamics of francisite Cu3Bi(SeO3)2O2Cl which combines several inelastic scattering experiments. We will then discuss how this study proves that francisite is, to our knowledge, the best candidate of a material displaying a displacive antiferroelectric phase transition. [less ▲]

Detailed reference viewed: 245 (20 UL)