![]() Schiltz, Christine ![]() in Cerebral Cortex (2006), 16(4), 574-586 The middle fusiform gyrus (MFG) and the inferior occipital gyrus (IOG) are activated by both detection and identification of faces. Paradoxically, patients with acquired prosopagnosia following lesions to ... [more ▼] The middle fusiform gyrus (MFG) and the inferior occipital gyrus (IOG) are activated by both detection and identification of faces. Paradoxically, patients with acquired prosopagnosia following lesions to either of these regions in the right hemisphere cannot identify faces, but can still detect faces. Here we acquired functional magnetic resonance imaging (fMRI) data during face processing in a patient presenting a specific deficit in individual face recognition, following lesions encompassing the right IOG. Using an adaptation paradigm we show that the fMRI signal in the rMFG of the patient, while being larger in response to faces as compared to objects, does not differ between conditions presenting identical and distinct faces, in contrast to the larger response to distinct faces observed in controls. These results suggest that individual discrimination of faces critically depends on the integrity of both the rMFG and the rIOG, which may interact through re-entrant cortical connections in the normal brain. [less ▲] Detailed reference viewed: 126 (1 UL)![]() ![]() ; ; Schiltz, Christine ![]() Poster (2004, August 13) In humans, neuroimaging studies have identified two major visual extrastriate areas presenting face-sensitive responses: in the inferior occipital cortex (‘occipital face area’, OFA), and the middle ... [more ▼] In humans, neuroimaging studies have identified two major visual extrastriate areas presenting face-sensitive responses: in the inferior occipital cortex (‘occipital face area’, OFA), and the middle fusiform gyrus (the ‘fusiform face area’, FFA), with a right hemispheric dominance. It has been proposed that the OFA, located anteriorly to foveal V4v (Halgren et al., 1999), has a critical role in the early perception of facial features and provides the feedforward outputs to later stages of face processing in both the FFA and the STS (Haxby et al., 2000). However, we have recently reported a normal activation of the right FFA despite a lesion encompassing the region of the right OFA in a brain-damaged prosopagnosic patient, PS (Rossion et al., 2003), suggesting that the face-sensitive responses observed at the level of the OFA in normals may rather arise from feedback connections from the FFA. Here we provide complementary fMRI evidence supporting this view. First, the normal differential activation for faces and objects in the right FFA of PS was observed only for left visual field presentations and is thus unlikely to originate from contralateral intact regions of the occipital cortex (e.g. left OFA). Second, the time-course in the right FFA and left OFA of PS for centrally presented items suggests an earlier differential activity between faces and objects in the most anterior region, the FFA. Finally, we imaged another (prosop)agnosic patient (NS, Delvenne et al., 2004) with a lesion encompassing the right FFA but sparing all posterior visual areas, and failed to disclose any face-sensitive response in his nonetheless structurally and functionnally intact occipital cortex. Together, these findings illustrate the necessary role of both the right FFA and OFA for accurate face perception, and reinforce the hypothesis that a dominant (feedback) connection from the FFA to the OFA subtends face-sensitive responses observed in the latter area when processing faces. [less ▲] Detailed reference viewed: 92 (8 UL)![]() ![]() Schiltz, Christine ![]() Poster (2004, June) In humans, neuroimaging studies have identified two major visual extrastriate areas presenting face-sensitive responses: in the inferior occipital cortex (‘occipital face area’, OFA), and the middle ... [more ▼] In humans, neuroimaging studies have identified two major visual extrastriate areas presenting face-sensitive responses: in the inferior occipital cortex (‘occipital face area’, OFA), and the middle fusiform gyrus (the ‘fusiform face area’, FFA), with a right hemispheric dominance. It has been proposed that the OFA, located anteriorly to foveal V4v (Halgren et al., 1999), has a critical role in the early perception of facial features and provides the feedforward outputs to later stages of face processing in both the FFA and the STS (Haxby et al., 2000). However, we have recently reported a normal activation of the right FFA despite a lesion encompassing the region of the right OFA in a brain-damaged prosopagnosic patient, PS (Rossion et al., 2003), suggesting that the face-sensitive responses observed at the level of the OFA in normals may rather arise from feedback connections from the FFA. Here we provide complementary fMRI evidence supporting this view. First, the normal differential activation for faces and objects in the right FFA of PS was observed only for left visual field presentations and is thus unlikely to originate from contralateral intact regions of the occipital cortex (e.g. left OFA). Second, the time-course in the right FFA and left OFA of PS for centrally presented items suggests an earlier differential activity between faces and objects in the most anterior region, the FFA. Finally, we imaged another (prosop)agnosic patient (NS, Delvenne et al., 2004) with a lesion encompassing the right FFA but sparing all posterior visual areas, and failed to disclose any face-sensitive response in his nonetheless structurally and functionnally intact occipital cortex. Together, these findings illustrate the necessary role of both the right FFA and OFA for accurate face perception, and reinforce the hypothesis that a dominant (feedback) connection from the FFA to the OFA subtends face-sensitive responses observed in the latter area when processing faces. [less ▲] Detailed reference viewed: 209 (0 UL)![]() ![]() Schiltz, Christine ![]() Poster (2004, June) Detailed reference viewed: 57 (0 UL) |
||