References of "Maturo, Nicola 50027750"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailModeling and Implementation of 5G Edge Caching over Satellite
Vu, Thang Xuan UL; Poirier, Yannick; Chatzinotas, Symeon UL et al

in International Journal of Satellite Communications and Networking (2020)

The fifth generation (5G) wireless networks have to deal with the high data rate and stringent latency requirements due to the massive invasion of connected devices and data-hungry applications. Edge ... [more ▼]

The fifth generation (5G) wireless networks have to deal with the high data rate and stringent latency requirements due to the massive invasion of connected devices and data-hungry applications. Edge caching is a promising technique to overcome these challenges by prefetching the content closer to the end users at the edge node’s local storage. In this paper, we analyze the performance of edge caching 5G networks with the aid of satellite communication systems. Firstly, we investigate the satellite-aided edge caching systems in two promising use cases: a) in dense urban areas, and b) in sparsely populated regions, e.g., rural areas. Secondly, we study the effectiveness of satellite systems via the proposed satellite-aided caching algorithm, which can be used in three configurations: i) mono-beam satellite, ii) multi-beam satellite, and iii) hybrid mode. Thirdly, the proposed caching algorithm is evaluated by using both empirical Zipf-distribution data and the more realistic Movielens dataset. Last but not least, the proposed caching scheme is implemented and tested by our developed demonstrators which allow real-time analysis of the cache hit ratio and cost analysis. [less ▲]

Detailed reference viewed: 44 (1 UL)
Full Text
Peer Reviewed
See detailCarrier Aggregation in Multi-Beam High Throughput Satellite Systems
Kibria, Mirza UL; Lagunas, Eva UL; Maturo, Nicola UL et al

in Carrier Aggregation in Multi-Beam High Throughput Satellite Systems (2019, December 10)

Carrier Aggregation (CA) is an integral part of current terrestrial networks. Its ability to enhance the peak data rate, to efficiently utilize the limited available spectrum resources and to satisfy the ... [more ▼]

Carrier Aggregation (CA) is an integral part of current terrestrial networks. Its ability to enhance the peak data rate, to efficiently utilize the limited available spectrum resources and to satisfy the demand for data-hungry applications has drawn large attention from different wireless network communities. Given the benefits of CA in the terrestrial wireless environment, it is of great interest to analyze and evaluate the potential impact of CA in the satellite domain. In this paper, we study CA in multi-beam high throughput satellite systems. We consider both inter-transponder and intra-transponder CA at the satellite payload level of the communication stack, and we address the problem of carrier-user assignment assuming that multiple users can be multiplexed in each carrier. The transmission parameters of different carriers are generated considering the transmission characteristics of carriers in different transponders. In particular, we propose a flexible carrier allocation approach for a CA enabled multi-beam satellite system targeting a proportionally fair user demand satisfaction. Simulation results and analysis shed some light on this rather unexplored scenario and demonstrate the feasibility of the CA in satellite communication systems. [less ▲]

Detailed reference viewed: 8 (2 UL)
Full Text
Peer Reviewed
See detailHardware Precoding Demonstration in Multi-Beam UHTS Communications under Realistic Payload Characteristics
Merlano Duncan, Juan Carlos UL; Querol Borras, Jorge UL; Maturo, Nicola UL et al

in Proceedings of the 37th International Communications Satellite Systems Conference (2019, November 01)

In this paper, we present a new hardware test-bed to demonstrate closed-loop precoded communications for interference mitigation in multi-beam ultra high throughput satellite systems under realistic ... [more ▼]

In this paper, we present a new hardware test-bed to demonstrate closed-loop precoded communications for interference mitigation in multi-beam ultra high throughput satellite systems under realistic payload and channel impairments. We build the test-bed to demonstrate a real-time channel aided precoded transmission under realistic conditions such as the power constraints and satellite-payload non-linearities. We develop a scalable architecture of an SDR platform with the DVB-S2X piloting. The SDR platform consists of two parts: analog-to-digital (ADC) and digital-to-analog (DAC) converters preceded by radio frequency (RF) front-end and Field-Programmable Gate Array (FPGA) backend. The former introduces realistic impairments in the transmission chain such as carrier frequency and phase misalignments, quantization noise of multichannel ADC and DAC and non-linearities of RF components. It allows evaluating the performance of the precoded transmission in a more realistic environment rather than using only numerical simulations. We benchmark the performance of the communication standard in realistic channel scenarios, evaluate received signal SNR, and measure the actual channel throughput using LDPC codes. [less ▲]

Detailed reference viewed: 18 (2 UL)
Full Text
See detailUser Terminal Wideband Modem for Very High Throughput Satellites
Kisseleff, Steven UL; Maturo, Nicola UL; Chatzinotas, Symeon UL et al

in 37th International Communications Satellite Systems Conference (ICSSC), Japan, October 2019 (2019, November)

Detailed reference viewed: 31 (0 UL)
Full Text
Peer Reviewed
See detailPhysical layer security over fading wiretap channels through classic coded transmissions with finite block length and discrete modulation
Baldi, Marco; Maturo, Nicola UL; Ricciutelli, Giacomo et al

in Physical Communication (2019)

Detailed reference viewed: 14 (0 UL)
Full Text
Peer Reviewed
See detailTheoretical Analysis and Implementation of Effective Receivers for Telecommand Space Links
Baldi, Marco; Bertinelli, Massimo; Chiaraluce, Franco et al

in 2019 8th International Workshop on Tracking, Telemetry and Command Systems for Space Applications (TTC) (2019)

Detailed reference viewed: 17 (0 UL)
Full Text
Peer Reviewed
See detailOff-line Correlator for Antenna Array Over Long Baselines
Ardito, Alessandro; Abelllo, Ricard; Aroumont, Anbazhagan et al

in 2019 8th International Workshop on Tracking, Telemetry and Command Systems for Space Applications (TTC) (2019)

Detailed reference viewed: 15 (0 UL)
Full Text
Peer Reviewed
See detailDemonstrator of Precoding Technique for a Multi-Beams Satellite System
Maturo, Nicola UL; Merlano Duncan, Juan Carlos UL; Krivochiza, Jevgenij UL et al

in 2019 8th International Workshop on Tracking, Telemetry and Command Systems for Space Applications (TTC) (2019)

Detailed reference viewed: 27 (3 UL)
Full Text
Peer Reviewed
See detailPrecoded Cluster Hopping in Multi-Beam High Throughput Satellite Systems
Kibria, Mirza UL; Lagunas, Eva UL; Maturo, Nicola UL et al

in Proceedings-IEEE Global Communications Conference (IEEE Globecom), Hawaii, 2019 (2019)

Beam-Hopping (BH) and precoding are two trending technologies for the satellite community. While BH enables flexibility to adapt the offered capacity to the heterogeneous demand, precoding aims at ... [more ▼]

Beam-Hopping (BH) and precoding are two trending technologies for the satellite community. While BH enables flexibility to adapt the offered capacity to the heterogeneous demand, precoding aims at boosting the spectral efficiency. In this paper, we consider a high throughput satellite (HTS) system that employs BH in conjunction with precoding. In particular, we propose the concept of Cluster-Hopping (CH) that seamlessly combines the BH and precoding paradigms and utilizes their individual competencies. The cluster is defined as a set of adjacent beams that are simultaneously illuminated. In addition, we propose an efficient time-space illumination pattern design, where we determine the set of clusters that can be illuminated simultaneously at each hopping event along with the illumination duration. We model the CH time-space illumination pattern design as an integer programming problem which can be efficiently solved. Supporting results based on numerical simulations are provided which validate the effectiveness of the proposed CH concept and time-space illumination pattern design. [less ▲]

Detailed reference viewed: 11 (5 UL)
Full Text
Peer Reviewed
See detailLink budget analysis for satellite-based narrowband IoT systems
Kodheli, Oltjon UL; Maturo, Nicola UL; Andrenacci, Stefano et al

Scientific Conference (2019)

Detailed reference viewed: 105 (28 UL)
Full Text
Peer Reviewed
See detailAn Uplink UE Group-Based Scheduling Technique for 5G mMTC Systems Over LEO Satellite
Kodheli, Oltjon UL; Andrenacci, Stefano; Maturo, Nicola UL et al

in IEEE Access (2019)

Narrowband Internet of Things (NB-IoT) is one of the most promising IoT technology to support the massive machine-type communication (mMTC) scenarios of the fifth generation mobile communication (5G ... [more ▼]

Narrowband Internet of Things (NB-IoT) is one of the most promising IoT technology to support the massive machine-type communication (mMTC) scenarios of the fifth generation mobile communication (5G). While the aim of this technology is to provide global coverage to the low-cost IoT devices distributed all over the globe, the vital role of satellites to complement and extend the terrestrial IoT network in remote or under-served areas has been recognized. In the context of having the global IoT networks, low earth (LEO) orbits would be beneficial due to their smaller propagation signal loss, which for the low complexity, low power, and cheap IoT devices is of utmost importance to close the link-budget. However, while this would lessen the problem of large delay and signal loss in the geostationary (GEO) orbit, it would come up with increased Doppler effects. In this paper, we propose an uplink scheduling technique for a LEO satellite-based mMTC NB-IoT system, able to mitigate the level of the differential Doppler down to a value tolerable by the IoT devices. The performance of the proposed strategy is validated through numerical simulations and the achievable data rates of the considered scenario are shown, in order to emphasize the limitations of such systems coming from the presence of a satellite channel. [less ▲]

Detailed reference viewed: 128 (30 UL)
Full Text
Peer Reviewed
See detailDeploying Joint Beamforming and Precoding in Multibeam Satellite Networks with Time Variant Traffic
Joroughi, Vahid; Lagunas, Eva UL; Andrenacci, Stefano UL et al

in IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, California, USA (2018, November)

Detailed reference viewed: 36 (8 UL)
Full Text
Peer Reviewed
See detailEfficient 5G Edge Caching Over Satellite
Vu, Thang Xuan UL; Maturo, Nicola UL; Vupalla, Satyaranayana et al

Scientific Conference (2018, October)

The fifth generation (5G) wireless networks have to deal with the high data rate and stringent latency requirements due to the massive invasion of connected devices and data-hungry applications. Edge ... [more ▼]

The fifth generation (5G) wireless networks have to deal with the high data rate and stringent latency requirements due to the massive invasion of connected devices and data-hungry applications. Edge caching is a promising technique to overcome these challenges by prefetching the content closer to the end users at the edge node's local storage. In this paper, we analyze the performance of edge caching 5G networks with the aid of satellite communication systems. Firstly, we investigate the satellite-aided edge caching systems in two promising use cases: a) in dense urban areas, and b) in sparsely populated regions, e.g., rural areas. Secondly, we study the effectiveness of satellite systems via the proposed satellite-aided caching algorithm, which can be used in three configurations: i) mono-beam satellite, ii) multi-beam satellite, and iii) hybrid mode. Thirdly, the proposed caching algorithm is evaluated by using both empirical Zipf-distribution data and the more realistic Movielens dataset. [less ▲]

Detailed reference viewed: 105 (9 UL)
Full Text
Peer Reviewed
See detailResource Allocation Approach for Differential Doppler Reduction in NB-IoT over LEO Satellite
Kodheli, Oltjon UL; Andrenacci, Stefano UL; Maturo, Nicola UL et al

in 9th Advanced Satellite Multimedia Systems Conference (ASMS) and 15th Signal Processing for Space Communications Workshop (SPSC), Berlin, Germany, 10-12 September 2018 (2018)

Internet of things (IoT) over satellite is an attractive system architecture which has been proposed as a key-enabling technology, to extend the coverage in remote areas (e.g. desert, ocean, forest, etc ... [more ▼]

Internet of things (IoT) over satellite is an attractive system architecture which has been proposed as a key-enabling technology, to extend the coverage in remote areas (e.g. desert, ocean, forest, etc), particularly where a terrestrial network is impossible or impractical to reach. One of the most promising technologies that fit the IoT vision of low-power, wide area networks (LPWAN) is the narrowband IoT (NB-IoT). While low earth orbit (LEO) satellites are favourable because of their lower round trip time (RTT) and lower propagation loss in the communication link, they come up with a significantly increased Doppler shift. In our NB-IoT over LEO satellite architecture, we identify the problem of high differential Doppler among channels of different users on Earth, which leads to the performance degradation of our system. In this paper, we propose a resource allocation approach in order to reduce the high values of differential Doppler under the maximum value supported by the standard itself. [less ▲]

Detailed reference viewed: 133 (26 UL)
Full Text
Peer Reviewed
See detailDeploying Joint Beamhopping and Precoding in Multibeam Satellite Networks
Joroughi, Vahid UL; Lagunas, Eva UL; Andrenacci, Stefano UL et al

in Global Conference on Signal and Information Processing (GlobalSIP) (2018)

Detailed reference viewed: 42 (3 UL)
Full Text
Peer Reviewed
See detailArchitectures and Key Technical Challenges for 5G Systems Incorporating Satellites
Giudotti, A.; Vanelli-Coralli, A.; Conti, M. et al

in IEEE Transactions on Vehicular Technology (2018)

Satellite Communication systems are a promising solution to extend and complement terrestrial networks in unserved or under-served areas. This aspect is reflected by recent commercial and standardisation ... [more ▼]

Satellite Communication systems are a promising solution to extend and complement terrestrial networks in unserved or under-served areas. This aspect is reflected by recent commercial and standardisation endeavours. In particular, 3GPP recently initiated a Study Item for New Radio-based, i.e., 5G, Non-Terrestrial Networks aimed at deploying satellite systems either as a stand-alone solution or as an integration to terrestrial networks in mobile broadband and machine-type communication scenarios. However, typical satellite channel impairments, as large path losses, delays, and Doppler shifts, pose severe challenges to the realisation of a satellite-based NR network. In this paper, based on the architecture options currently being discussed in the standardisation fora, we discuss and assess the impact of the satellite channel characteristics on the physical and Medium Access Control layers, both in terms of transmitted waveforms and procedures for enhanced Mobile BroadBand (eMBB) and NarrowBand-Internet of Things (NB-IoT) applications. The proposed analysis shows that the main technical challenges are related to the PHY/MAC procedures, in particular Random Access (RA), Timing Advance (TA), and Hybrid Automatic Repeat reQuest (HARQ) and, depending on the considered service and architecture, different solutions are proposed. [less ▲]

Detailed reference viewed: 79 (10 UL)