![]() ; ; et al in ICUAS 2012 : 2012 International Conference on Unmanned Aircraft Systems (2012, June) In this paper, we present a real-time tracking strategy based on direct methods for tracking tasks on-board UAVs, that is able to overcome problems posed by the challenging conditions of the task: e.g ... [more ▼] In this paper, we present a real-time tracking strategy based on direct methods for tracking tasks on-board UAVs, that is able to overcome problems posed by the challenging conditions of the task: e.g. constant vibrations, fast 3D changes, and limited capacity on-board. The vast majority of approaches make use of feature-based methods to track objects. Nonetheless, in this paper we show that although some of these feature-based solutions are faster, direct methods can be more robust under fast 3D motions (fast changes in position), some changes in appearance, constant vibrations (without requiring any specific hardware or software for video stabilization), and situations where part of the object to track is out the field of view of the camera. The performance of the proposed strategy is evaluated with images from real-flight tests using different evaluation mechanisms (e.g. accurate position estimation using a Vicon sytem). Results show that our tracking strategy performs better than well known feature-based algorithms and well known configurations of direct methods, and that the recovered data is robust enough for vision-in-the-loop tasks. [less ▲] Detailed reference viewed: 91 (15 UL)![]() Olivares Mendez, Miguel Angel ![]() in First Workshop on Research, Development and Education on Unmanned Aerial Systems (RED-UAS 2011) (2011) This article presents a visual servoing system to follow a 3D moving object by a Micro Unmanned Aerial Vehicle (MUAV). The presented control strategy is based only on the visual information given by an ... [more ▼] This article presents a visual servoing system to follow a 3D moving object by a Micro Unmanned Aerial Vehicle (MUAV). The presented control strategy is based only on the visual information given by an adaptive tracking method based on the color information. A visual fuzzy system has been developed for servoing the camera situated on a rotary wing MAUV, that also considers its own dynamics. This system is focused on continuously following of an aerial moving target object, maintaining it with a fixed safe distance and centered on the image plane. The algorithm is validated on real flights on outdoors scenarios, showing the robustness of the proposed systems against winds perturbations, illumination and weather changes among others. The obtained results indicate that the proposed algorithms is suitable for complex controls task, such object following and pursuit, flying in formation, as well as their use for indoor navigation [less ▲] Detailed reference viewed: 74 (3 UL)![]() ; ; Olivares Mendez, Miguel Angel ![]() in Journal of Intelligent and Robotic Systems (2011), 61(1-4), 301-320 In this paper, two techniques to control UAVs (Unmanned Aerial Vehicles), based on visual information are presented. The first one is based on the detection and tracking of planar structures from an on ... [more ▼] In this paper, two techniques to control UAVs (Unmanned Aerial Vehicles), based on visual information are presented. The first one is based on the detection and tracking of planar structures from an on-board camera, while the second one is based on the detection and 3D reconstruction of the position of the UAV based on an external camera system. Both strategies are tested with a VTOL (Vertical take-off and landing) UAV, and results show good behavior of the visual systems (precision in the estimation and frame rate) when estimating the helicopter's position and using the extracted information to control the UAV. [less ▲] Detailed reference viewed: 215 (2 UL)![]() Olivares Mendez, Miguel Angel ![]() in BICS 2010 Conference on Brain-Inspired Cognitive Systems (2010, July) Abstract This paper presents an improvement of the cognitive architecture, 4D/RCS, developed by the NIST. This improvement consist of the insertion of Fuzzy Logic cells (FLCs), in different parts and ... [more ▼] Abstract This paper presents an improvement of the cognitive architecture, 4D/RCS, developed by the NIST. This improvement consist of the insertion of Fuzzy Logic cells (FLCs), in different parts and hierarchy levels of the architecture, and the adaptation of this architecture for Unmanned Aerial Vehicles (UAVs). This advance provides an improvement in the functionality of the system based on the uses of the Miguel Olivares’ Fuzzy Software for the definition of the FLCs and its adaptative learning algorithm. These adaptative-FLCs contribute with the reduction of the uncertainty in the data sensor adquisition, a more adaptative behavior of the system to the real world and the reduction of the computational cost in the decision making. [less ▲] Detailed reference viewed: 118 (1 UL)![]() ; ; Olivares Mendez, Miguel Angel ![]() in Fung, Rong-Fong (Ed.) Visual Servoing (2010) Detailed reference viewed: 73 (2 UL)![]() ; ; et al in Robotics and Autonomous Systems (2010), 58(6), 809-819 This paper presents an aircraft attitude and heading estimator using catadioptric images as a principal sensor for UAV or as a redundant system for IMU (Inertial Measure Unit) and gyro sensors. First, we ... [more ▼] This paper presents an aircraft attitude and heading estimator using catadioptric images as a principal sensor for UAV or as a redundant system for IMU (Inertial Measure Unit) and gyro sensors. First, we explain how the unified theory for central catadioptric cameras is used for attitude and heading estimation, explaining how the skyline is projected on the catadioptric image and how it is segmented and used to calculate the UAV's attitude. Then, we use appearance images to obtain a visual compass, and we calculate the relative rotation and heading of the aerial vehicle. Finally the tests and results using the UAV COLIBRI platform and the validation of them in real flights are presented, comparing the estimated data with the inertial values measured on board. (C) 2010 Elsevier B.V. All rights reserved. [less ▲] Detailed reference viewed: 159 (2 UL)![]() ; ; et al in Proccedings of World Congress on Computational Intelligence (WCCI 2010) (2010) A neural behavior initiating agent (BIA) is proposed to integrate relevant compressed image information coming from others cooperating and specialized neural agents. Using this arrangement the problem of ... [more ▼] A neural behavior initiating agent (BIA) is proposed to integrate relevant compressed image information coming from others cooperating and specialized neural agents. Using this arrangement the problem of tracking and recognizing a moving icon has been solved by partitioning it into three simpler and separated tasks. Neural modules associated to those tasks proved to be easier to train and show a good general performance. The obtained neural controller can handle spurious images and solve an acute image related task in a dynamical environment. Under prolonged dead-lock conditions the controller shows traces of genuine spontaneity. The overall performance has been tested using a pan and tilt camera platform and real images taken from several objects, showing the good tracking results discussed in the paper. [less ▲] Detailed reference viewed: 90 (0 UL)![]() ; ; et al in Proccedings of IEEE International Conference on Robotics and Automation (ICRA) (2010) This article presents a real time Unmanned Aerial Vehicles UAVs 3D pose estimation method using planar object tracking, in order to be used on the control system of a UAV. The method explodes the rich ... [more ▼] This article presents a real time Unmanned Aerial Vehicles UAVs 3D pose estimation method using planar object tracking, in order to be used on the control system of a UAV. The method explodes the rich information obtained by a projective transformation of planar objects on a calibrated camera. The algorithm obtains the metric and projective components of a reference object (landmark or helipad) with respect to the UAV camera coordinate system, using a robust real time object tracking based on homographies. The algorithm is validated on real flights that compare the estimated data against that obtained by the inertial measurement unit IMU, showing that the proposed method robustly estimates the helicopter's 3D position with respect to a reference landmark, with a high quality on the position and orientation estimation when the aircraft is flying at low altitudes, a situation in which the GPS information is often inaccurate. The obtained results indicate that the proposed algorithm is suitable for complex control tasks, such as autonomous landing, accurate low altitude positioning and dropping of payloads. [less ▲] Detailed reference viewed: 179 (2 UL)![]() Olivares Mendez, Miguel Angel ![]() in Proccedings of World Congress on Computational Intelligence (WCCI 2010) (2010) This paper presents a Fuzzy Control application for a landing task of an Unmanned Aerial Vehicle, using the 3D-position estimation based on visual tracking of piecewise planar objects. This application ... [more ▼] This paper presents a Fuzzy Control application for a landing task of an Unmanned Aerial Vehicle, using the 3D-position estimation based on visual tracking of piecewise planar objects. This application allows the UAV to land on scenarios in which it is only possible to use visual information to obtain the position of the vehicle. The use of the homography permits a realtime estimation of the UAV's pose with respect to a helipad using a monocular camera. Fuzzy Logic allows the definition of a model-free control system of the UAV. The Fuzzy controller analyzes the visual information to generate altitude commands for the UAV to develop the landing task. [less ▲] Detailed reference viewed: 128 (3 UL)![]() ; Olivares Mendez, Miguel Angel ![]() in AUTONOMOUS ROBOTS (2010), 29(1), 17-34 This paper presents an implementation of an aircraft pose and motion estimator using visual systems as the principal sensor for controlling an Unmanned Aerial Vehicle (UAV) or as a redundant system for an ... [more ▼] This paper presents an implementation of an aircraft pose and motion estimator using visual systems as the principal sensor for controlling an Unmanned Aerial Vehicle (UAV) or as a redundant system for an Inertial Measure Unit (IMU) and gyros sensors. First, we explore the applications of the unified theory for central catadioptric cameras for attitude and heading estimation, explaining how the skyline is projected on the catadioptric image and how it is segmented and used to calculate the UAV's attitude. Then we use appearance images to obtain a visual compass, and we calculate the relative rotation and heading of the aerial vehicle. Additionally, we show the use of a stereo system to calculate the aircraft height and to measure the UAV's motion. Finally, we present a visual tracking system based on Fuzzy controllers working in both a UAV and a camera pan and tilt platform. Every part is tested using the UAV COLIBRI platform to validate the different approaches, which include comparison of the estimated data with the inertial values measured onboard the helicopter platform and the validation of the tracking schemes on real flights. [less ▲] Detailed reference viewed: 163 (4 UL)![]() Olivares Mendez, Miguel Angel ![]() in EUROFUSE 2009. workshop on on preference modelling and decision analysis (2009, September) This paper presents an implementa- tion of three Fuzzy Logic controllers working in parallel onboard a UAV, two for a pan-tilt camera platform and the third for control the yaw of the helicopter. This ... [more ▼] This paper presents an implementa- tion of three Fuzzy Logic controllers working in parallel onboard a UAV, two for a pan-tilt camera platform and the third for control the yaw of the helicopter. This implementation uses a Lucas-Kanade tracker algo- rithm with a pyramidal optical ow implementation, which gives infor- mation to follow statics and moving objects, besides the UAV vibrations and movements. The platform con- troller is helped by the heading con- troller, in order to make smooth the big movements to the platform, re- ducing the risk of lost the warp selec- tion of the object to track. Also, the heading control remove the physic limit of the platform at the yaw axis. Some laboratory and UAV tests are presented in order to show the differ- ent behaviors and the good response of the presented controllers. [less ▲] Detailed reference viewed: 79 (3 UL)![]() Olivares Mendez, Miguel Angel ![]() in 2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (2009) This paper presents an implementation of two Fuzzy Logic controllers working in parallel for a pan-tilt camera platform on an IJAV. This implementation uses a basic Lucas-Kanade tracker algorithm, which ... [more ▼] This paper presents an implementation of two Fuzzy Logic controllers working in parallel for a pan-tilt camera platform on an IJAV. This implementation uses a basic Lucas-Kanade tracker algorithm, which sends information about the error between the center of the object to track and the center of the image, to the Fuzzy controller. This information is enough for the controller to follow the object by moving a two axis servo-platform, regardless the UAV vibrations and movements. The two Fuzzy controllers for each axis, work with a rules-base of 49 rules, two inputs and one output with a more significant sector defined to improve the behavior of those controllers. The controllers have shown very good performances in real flights for statics objects, tested on the Colibri prototypes. [less ▲] Detailed reference viewed: 146 (5 UL)![]() ; ; et al in 2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (2009) In this paper we introduce a real-time trinocular system to control rotary wing Unmanned Aerial Vehicles based on the 3D information extracted by cameras located on the ground. The algorithm is based on ... [more ▼] In this paper we introduce a real-time trinocular system to control rotary wing Unmanned Aerial Vehicles based on the 3D information extracted by cameras located on the ground. The algorithm is based on key features onboard the UAV to estimate the vehicle's position and orientation. The algorithm is validated against onboard sensors and known 3D positions, showing that the proposed camera configuration robustly estimates the helicopter's position with an adequate resolution, improving the position estimation, especially the height estimation. The obtained results show that the proposed algorithm is suitable to complement or replace the GPS-based position estimation in situations where GPS information is unavailable or where its information is inaccurate, allowing the vehicle to develop tasks at low heights, such as autonomous landing, take-off, and positioning, using the extracted 3D information as a visual feedback to the flight controller. [less ▲] Detailed reference viewed: 139 (1 UL)![]() ; ; et al in Journal of Intelligent and Robotic Systems (2009), 55(4-5), 299-321 The aim of the paper is to present, test and discuss the implementation of Visual SLAM techniques to images taken from Unmanned Aerial Vehicles (UAVs) outdoors, in partially structured environments. Every ... [more ▼] The aim of the paper is to present, test and discuss the implementation of Visual SLAM techniques to images taken from Unmanned Aerial Vehicles (UAVs) outdoors, in partially structured environments. Every issue of the whole process is discussed in order to obtain more accurate localization and mapping from UAVs flights. Firstly, the issues related to the visual features of objects in the scene, their distance to the UAV, and the related image acquisition system and their calibration are evaluated for improving the whole process. Other important, considered issues are related to the image processing techniques, such as interest point detection, the matching procedure and the scaling factor. The whole system has been tested using the COLIBRI mini UAV in partially structured environments. The results that have been obtained for localization, tested against the GPS information of the flights, show that Visual SLAM delivers reliable localization and mapping that makes it suitable for some outdoors applications when flying UAVs. [less ▲] Detailed reference viewed: 103 (8 UL)![]() ; ; et al in Journal of Intelligent and Robotic Systems (2009), 54(1-3), 105-135 Computer vision is much more than a technique to sense and recover environmental information from an UAV. It should play a main role regarding UAVs' functionality because of the big amount of information ... [more ▼] Computer vision is much more than a technique to sense and recover environmental information from an UAV. It should play a main role regarding UAVs' functionality because of the big amount of information that can be extracted, its possible uses and applications, and its natural connection to human driven tasks, taking into account that vision is our main interface to world understanding. Our current research's focus lays on the development of techniques that allow UAVs to maneuver in spaces using visual information as their main input source. This task involves the creation of techniques that allow an UAV to maneuver towards features of interest whenever a GPS signal is not reliable or sufficient, e. g. when signal dropouts occur (which usually happens in urban areas, when flying through terrestrial urban canyons or when operating on remote planetary bodies), or when tracking or inspecting visual targets-including moving ones-without knowing their exact UMT coordinates. This paper also investigates visual servoing control techniques that use velocity and position of suitable image features to compute the references for flight control. This paper aims to give a global view of the main aspects related to the research field of computer vision for UAVs, clustered in four main active research lines: visual servoing and control, stereo-based visual navigation, image processing algorithms for detection and tracking, and visual SLAM. Finally, the results of applying these techniques in several applications are presented and discussed: this study will encompass power line inspection, mobile target tracking, stereo distance estimation, mapping and positioning. [less ▲] Detailed reference viewed: 166 (3 UL) |
||