References of "Maier, Sebastian K. G"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailConditional neuronal nitric oxide synthase overexpression impairs myocardial contractility.
Burkard, Natalie; Rokita, Adam G.; Kaufmann, Susann G. et al

in Circulation Research (2007), 100(3), 32-44

The role of the neuronal NO synthase (nNOS or NOS1) enzyme in the control of cardiac function still remains unclear. Results from nNOS(-/-) mice or from pharmacological inhibition of nNOS are ... [more ▼]

The role of the neuronal NO synthase (nNOS or NOS1) enzyme in the control of cardiac function still remains unclear. Results from nNOS(-/-) mice or from pharmacological inhibition of nNOS are contradictory and do not pay tribute to the fact that probably spatial confinement of the nNOS enzyme is of major importance. We hypothesize that the close proximity of nNOS and certain effector molecules like L-type Ca(2+)-channels has an impact on myocardial contractility. To test this, we generated a new transgenic mouse model allowing conditional, myocardial specific nNOS overexpression. Western blot analysis of transgenic nNOS overexpression showed a 6-fold increase in nNOS protein expression compared with noninduced littermates (n=12; P<0.01). Measuring of total NOS activity by conversion of [(3)H]-l-arginine to [(3)H]-l-citrulline showed a 30% increase in nNOS overexpressing mice (n=18; P<0.05). After a 2 week induction, nNOS overexpression mice showed reduced myocardial contractility. In vivo examinations of the nNOS overexpressing mice revealed a 17+/-3% decrease of +dp/dt(max) compared with noninduced mice (P<0.05). Likewise, ejection fraction was reduced significantly (42% versus 65%; n=15; P<0.05). Interestingly, coimmunoprecipitation experiments indicated interaction of nNOS with SR Ca(2+)ATPase and additionally with L-type Ca(2+)- channels in nNOS overexpressing animals. Accordingly, in adult isolated cardiac myocytes, I(Ca,L) density was significantly decreased in the nNOS overexpressing cells. Intracellular Ca(2+)-transients and fractional shortening in cardiomyocytes were also clearly impaired in nNOS overexpressing mice versus noninduced littermates. In conclusion, conditional myocardial specific overexpression of nNOS in a transgenic animal model reduced myocardial contractility. We suggest that nNOS might suppress the function of L-type Ca(2+)-channels and in turn reduces Ca(2+)-transients which accounts for the negative inotropic effect. [less ▲]

Detailed reference viewed: 87 (1 UL)
Full Text
Peer Reviewed
See detailAging reduces the efficacy of estrogen substitution to attenuate cardiac hypertrophy in female spontaneously hypertensive rats.
Jazbutyte, Virginija; Hu, Kai; Kruchten, Patricia et al

in Hypertension (2006), 48(4), 579-86

Clinical trials failed to show a beneficial effect of postmenopausal hormone replacement therapy, whereas experimental studies in young animals reported a protective function of estrogen replacement in ... [more ▼]

Clinical trials failed to show a beneficial effect of postmenopausal hormone replacement therapy, whereas experimental studies in young animals reported a protective function of estrogen replacement in cardiovascular disease. Because these diverging results could in part be explained by aging effects, we compared the efficacy of estrogen substitution to modulate cardiac hypertrophy and cardiac gene expression among young (age 3 months) and senescent (age 24 months) spontaneously hypertensive rats (SHRs), which were sham operated or ovariectomized and injected with placebo or identical doses of 17beta-estradiol (E2; 2 microg/kg body weight per day) for 6 weeks (n=10/group). Blood pressure was comparable among sham-operated senescent and young SHRs and not altered by ovariectomy or E2 treatment among young or among senescent rats. Estrogen substitution inhibited uterus atrophy and gain of body weight in young and senescent ovariectomized SHRs, but cardiac hypertrophy was attenuated only in young rats. Cardiac estrogen receptor-alpha expression was lower in intact and in ovariectomized senescent compared with young SHRs and increased with estradiol substitution in aged rats. Plasma estradiol and estrone levels were lower not only in sham-operated but surprisingly also in E2-substituted senescent SHRs and associated with a reduction of hepatic 17beta-hydroxysteroid dehydrogenase type 1 enzyme activity, which converts weak (ie, estrone) into potent estrogens, such as E2. Aging attenuates the antihypertrophic effect of estradiol in female SHRs and is associated with profound alterations in cardiac estrogen receptor-alpha expression and estradiol metabolism. These observations contribute to explain the lower efficiency of estrogen substitution in senescent SHRs. [less ▲]

Detailed reference viewed: 106 (0 UL)
Full Text
Peer Reviewed
See detailOptimization of gene transfer into neonatal rat cardiomyocytes and unmasking of cytomegalovirus promoter silencing.
Bauer, Sebastian; Maier, Sebastian K. G.; Neyses, Ludwig UL et al

in DNA and cell biology (2005), 24(6), 381-7

Cardiomyocytes are notoriously difficult to transfect using standard techniques unless viral vectors such as recombinant adenoviruses are used. Generation of recombinant adenoviruses is, however, a ... [more ▼]

Cardiomyocytes are notoriously difficult to transfect using standard techniques unless viral vectors such as recombinant adenoviruses are used. Generation of recombinant adenoviruses is, however, a complex and time-consuming procedure and not possible for every DNA construct. We therefore optimized DNA/polylysine/adenovirus complexing for efficient gene transfer in neonatal rat cardiomyocytes determining the critical parameters for this method. Importantly, not only the concentration of the various components but also the method used for plasmid purification is critical for this transfection technique. Cesium-chloride-purified DNA is inferior to anion-exchange methods for this purpose possibly because of altered ionic properties. In the second part of this study, we could demonstrate silent gene transfer into cardiomyocytes applying this optimized technique to plasmids encoding luciferase or beta-galactosidase cDNAs under the control of the cytomegalovirus immediate-early promoter. Phorbol myristate acetate and/or forskolin increased the amount of beta-galactosidase positive cells up to fivefold. Luciferase activity could even be increased as much as ninefold. These results demonstrate that the cytomegalovirus promoter is not maximally active in neonatal rat cardiomyocytes under basal conditions. In fact, a large proportion of cells is silently transfected and seems to express (an) inhibitor(s) of transcription from the CMV promoter that can be overcome by stimulation of cAMP- or protein kinase C-dependent pathways. [less ▲]

Detailed reference viewed: 130 (0 UL)