References of "Magnusdottir, Manuela"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailPrediction of intracellular metabolic states from extracellular metabolomic data
Aurich, Maike Kathrin UL; Paglia, Guiseppe; Rolfsson, Ottar et al

in Metabolomics : Official journal of the Metabolomic Society (2015), 11(3), 603-619

Metabolic models can provide a mechanistic framework to analyze information-rich omics data sets, and are increasingly being used to investigate metabolic alternations in human diseases. An expression of ... [more ▼]

Metabolic models can provide a mechanistic framework to analyze information-rich omics data sets, and are increasingly being used to investigate metabolic alternations in human diseases. An expression of the altered metabolic pathway utilization is the selection of metabolites consumed and released by cells. However, methods for the inference of intracellular metabolic states from extracellular measurements in the context of metabolic models remain underdeveloped compared to methods for other omics data. Herein, we describe a workflow for such an integrative analysis emphasizing on extracellular metabolomics data. We demonstrate, using the lymphoblastic leukemia cell lines Molt-4 and CCRF-CEM, how our methods can reveal differences in cell metabolism. Our models explain metabolite uptake and secretion by predicting a more glycolytic phenotype for the CCRFCEM model and a more oxidative phenotype for the Molt-4 model, which was supported by our experimental data. Gene expression analysis revealed altered expression of gene products at key regulatory steps in those central metabolic pathways, and literature query emphasized the role of these genes in cancer metabolism. Moreover, in silico gene knock-outs identified unique control points for each cell line model, e.g., phosphoglycerate dehydrogenase for the Molt-4 model. Thus, our workflow is well-suited to the characterization of cellular metabolic traits based on extracellular metabolomic data, and it allows the integration of multiple omics data sets into a cohesive picture based on a defined model context. [less ▲]

Detailed reference viewed: 468 (54 UL)
Full Text
Peer Reviewed
See detailInferring the metabolism of human orphan metabolites from their metabolic network context affirms human gluconokinase activity.
Rolfsson, Ottar; Paglia, Giuseppe; Magnusdottir, Manuela et al

in Biochemical Journal (2013), 449(2), 427-435

Metabolic network reconstructions define metabolic information within a target organism and can therefore be used to address incomplete metabolic information. In the present study we used a computational ... [more ▼]

Metabolic network reconstructions define metabolic information within a target organism and can therefore be used to address incomplete metabolic information. In the present study we used a computational approach to identify human metabolites whose metabolism is incomplete on the basis of their detection in humans but exclusion from the human metabolic network reconstruction RECON 1. Candidate solutions, composed of metabolic reactions capable of explaining the metabolism of these compounds, were then identified computationally from a global biochemical reaction database. Solutions were characterized with respect to how metabolites were incorporated into RECON 1 and their biological relevance. Through detailed case studies we show that biologically plausible non-intuitive hypotheses regarding the metabolism of these compounds can be proposed in a semi-automated manner, in an approach that is similar to de novo network reconstruction. We subsequently experimentally validated one of the proposed hypotheses and report that C9orf103, previously identified as a candidate tumour suppressor gene, encodes a functional human gluconokinase. The results of the present study demonstrate how semi-automatic gap filling can be used to refine and extend metabolic reconstructions, thereby increasing their biological scope. Furthermore, we illustrate how incomplete human metabolic knowledge can be coupled with gene annotation in order to prioritize and confirm gene functions. [less ▲]

Detailed reference viewed: 105 (6 UL)
Full Text
Peer Reviewed
See detailMonitoring metabolites consumption and secretion in cultured cells using ultra-performance liquid chromatography quadrupole-time of flight mass spectrometry (UPLC-Q-ToF-MS).
Paglia, Giuseppe; Hrafnsdottir, Sigrun; Magnusdottir, Manuela et al

in Analytical and Bioanalytical Chemistry (2012), 402(3), 1183-98

Here we present an ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method for extracellular measurements of known and unexpected metabolites in parallel. The method was developed by ... [more ▼]

Here we present an ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method for extracellular measurements of known and unexpected metabolites in parallel. The method was developed by testing 86 metabolites, including amino acids, organic acids, sugars, purines, pyrimidines, vitamins, and nucleosides, that can be resolved by combining chromatographic and m/z dimensions. Subsequently, a targeted quantitative method was developed for 80 metabolites. The presented method combines a UPLC approach using hydrophilic interaction liquid chromatography (HILIC) and MS detection achieved by a hybrid quadrupole-time of flight (Q-ToF) mass spectrometer. The optimal setup was achieved by evaluating reproducibility and repeatability of the analytical platforms using pooled quality control samples to minimize the drift in instrumental performance over time. Then, the method was validated by analyzing extracellular metabolites from acute lymphoblastic leukemia cell lines (MOLT-4 and CCRF-CEM) treated with direct (A-769662) and indirect (AICAR) AMP activated kinase (AMPK) activators, monitoring uptake and secretion of the targeted compound over time. This analysis pointed towards a perturbed purine and pyrimidine catabolism upon AICAR treatment. Our data suggest that the method presented can be used for qualitative and quantitative analysis of extracellular metabolites and it is suitable for routine applications such as in vitro drug screening. [less ▲]

Detailed reference viewed: 125 (3 UL)
Full Text
Peer Reviewed
See detailIntracellular metabolite profiling of platelets: evaluation of extraction processes and chromatographic strategies.
Paglia, Giuseppe; Magnusdottir, Manuela; Thorlacius, Steinunn et al

in Journal of Chromatography. B : Analytical Technologies in the Biomedical & Life Sciences (2012), 898

An extraction method for intracellular metabolite profiling should ideally be able to recover the broadest possible range of metabolites present in a sample. However, the development of such methods is ... [more ▼]

An extraction method for intracellular metabolite profiling should ideally be able to recover the broadest possible range of metabolites present in a sample. However, the development of such methods is hampered by the diversity of the physico-chemical properties of metabolites as well as by the specific characteristics of samples and cells. In this study, we report the optimization of an UPLC-MS method for the metabolite analysis of platelet samples. The optimal analytical protocol was determined by testing seven different extraction methods as well as by employing two different LC-MS methods, in which the metabolites were separated by using hydrophilic interaction liquid chromatography (HILIC) and reversed phase liquid chromatography (RPLC). The optimal conditions were selected using the coverage of the platelets' metabolome, the response of the identified metabolites, the reproducibility of the analytical method, and the time of the analysis as main evaluation criteria. Our results show that methanol-water (7:3) extraction coupled with HILIC-MS method provides the best compromise, allowing identification of 107 metabolites in a platelet cell extract sample, 91% of them with a RSD% lower than 20. A higher number of metabolites could be detected when analyzing the platelet samples with two different LC-MS methods or when using complementary extraction methods in parallel. [less ▲]

Detailed reference viewed: 112 (1 UL)