References of "Maggiora, Marco"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailAssessing the robustness of decentralized gathering: a multi‐agent approach on micro‐biological systems
Proverbio, Daniele UL; Gallo, Luca; Passalacqua, Barbara et al

in Swarm Intelligence (2020), 14

Adopting a multi-agent systems paradigm, we developed, tested and exploited a computational testbed that simulates gathering features of the social amoeba Dictyostelium discoideum. It features a tailored ... [more ▼]

Adopting a multi-agent systems paradigm, we developed, tested and exploited a computational testbed that simulates gathering features of the social amoeba Dictyostelium discoideum. It features a tailored design and implementation to manage discrete simulations with autonomous agents on a microscopic scale, thus focusing on their social behavior and mutual interactions. Hence, we could assess the behavioral conditions under which decentralized gathering could occur. We investigated the dependence of the model dynamics on the main physical variables, namely density and number of amoebas, gaining indications that the process strongly depends on both. This result integrates previous researches, where density is identified as the sole relevant variable. We determined a high-density and high-numerosity region where assuming a scale-free behavior is safe. We also estimated the systematic uncertainties arising from a number of amoebas off the scale-free region, when coping with limited computational resources. Finally, we probed the robustness of the simulated gathering process against both extrinsic and intrinsic noise sources. [less ▲]

Detailed reference viewed: 125 (5 UL)
Full Text
See detailDynamical strategies for obstacle avoidance during Dictyostelium discoideum aggregation: a Multi-agent system model
Proverbio, Daniele UL; Maggiora, Marco

E-print/Working paper (2019)

Chemotaxis, the movement of an organism in response to a chemical stimulus, is a typical feature of many microbiological systems. In particular, the social amoeba Disctyostelium discoideum is widely used ... [more ▼]

Chemotaxis, the movement of an organism in response to a chemical stimulus, is a typical feature of many microbiological systems. In particular, the social amoeba Disctyostelium discoideum is widely used as a model organism, but it is not still clear how it behaves in heterogeneous environments. A few models focused on mechanical features have already addressed the question; however, we propose that phenomenological models focusing on the dynamics may provide new meaningful data. Consequently, by means of a specific Multi-agent system model, we studied the dynamical features emerging from complex social interactions among individuals belonging to amoeboids colonies. After defining an appropriate metric to perform meaningful measurements, we found that: a) obstacles play the role of local topological perturbation, as they alter the flux of chemical signals; b) that obstacle that physically block the cellular motion as well as the chemicals elicit dynamical evolutions that are not statistically distinguishable from the case where obstacles that do not interfere physically with said motion; c) that fluctuations of the dynamics can lead to better exploration of the physical space, thus preventing multiple stable aggregates. From previous results, we may speculate about the fact that chemotactic cells, in many cases, can avoid obstacles by simply following the altered chemical gradient: social interactions seem to be sufficient to guarantee the aggregation of the whole colony past numerous obstacles. It is then unlikely that cells have developed special mechanisms to cope with the presence of topological perturbation sources. Nevertheless, we suggest that further studies can provide better understanding and that, in order to gain deeper knowledge, mechanical models should be coupled with phenomenological, system-oriented ones. [less ▲]

Detailed reference viewed: 79 (10 UL)