References of "Luft, Andreas R."
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe subthalamic nucleus modulates the early phase of probabilistic classification learning.
Weiss, Daniel; Lam, Judith M.; Breit, Sorin et al

in Experimental brain research (2014), 232(7), 2255-62

Previous models proposed that the subthalamic nucleus (STN) is critical in the early phase of skill acquisition. We hypothesized that subthalamic deep brain stimulation modulates the learning curve in ... [more ▼]

Previous models proposed that the subthalamic nucleus (STN) is critical in the early phase of skill acquisition. We hypothesized that subthalamic deep brain stimulation modulates the learning curve in early classification learning. Thirteen idiopathic Parkinson's disease patients (iPD) with subthalamic deep brain stimulation (STN-DBS), 9 medically treated iPD, and 21 age-matched healthy controls were tested with a probabilistic classification task. STN-DBS patients were tested with stimulation OFF and ON, and medically treated patients with medication OFF and ON, respectively. Performance and reaction time were analyzed on the first 100 consecutive trials as early learning phase. Moreover, data were separated for low and high-probability patterns, and more differentiated strategy analyses were used. The major finding was a significant modulation of the learning curve in DBS patients with stimulation ON: although overall learning was similar to healthy controls, only the stimulation ON group showed a transient significant performance dip from trials '41-60' that rapidly recovered. Further analysis indicated that this might be paralleled by a modulation of the learning strategy, particularly on the high-probability patterns. The reaction time was unchanged during the dip. Our study supports that the STN serves as a relay in early classification learning and directs attention toward unacquainted content. The STN might play a role in balancing the short-term success against strategy optimization for improved long-term outcome. [less ▲]

Detailed reference viewed: 143 (6 UL)
Full Text
Peer Reviewed
See detailTransgenic overexpression of the alpha-synuclein interacting protein synphilin-1 leads to behavioral and neuropathological alterations in mice.
Nuber, Silke; Franck, Thomas; Wolburg, Hartwig et al

in Neurogenetics (2010), 11(1), 107-20

Synphilin-1 has been identified as an interacting protein of alpha-synuclein, Parkin, and LRRK2, proteins which are mutated in familial forms of Parkinson disease (PD). Subsequently, synphilin-1 has also ... [more ▼]

Synphilin-1 has been identified as an interacting protein of alpha-synuclein, Parkin, and LRRK2, proteins which are mutated in familial forms of Parkinson disease (PD). Subsequently, synphilin-1 has also been shown to be an intrinsic component of Lewy bodies in sporadic PD. In order to elucidate the role of synphilin-1 in the pathogenesis of PD, we generated transgenic mice overexpressing wild-type and mutant (R621C) synphilin-1 driven by a mouse prion protein promoter. Transgenic expression of both wild-type and the R621C variant synphilin-1 resulted in increased dopamine levels of the nigrostriatal system in 3-month-old mice. Furthermore, we found pathological ubiquitin-positive inclusions in cerebellar sections and dark-cell degeneration of Purkinje cells. Both transgenic mouse lines showed significant reduction of motor skill learning and motor performance. These findings suggest a pathological role of overexpressed synphilin-1 in vivo and will help to further elucidate the mechanisms of protein aggregation and neuronal cell death. [less ▲]

Detailed reference viewed: 139 (0 UL)