References of "Liang, Tao"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailSecure Energy Efficiency Maximization in Cognitive Satellite-Terrestrial Networks
Lu, Weixin; An, Kang; Liang, Tao et al

in IEEE Systems Journal (2021), 15(2), 2382-2385

This article investigates the secure energy efficiency (EE) optimization problem in a cognitive satellite-terrestrial network with a capable eavesdropper. The objective is to maximize the secure EE for ... [more ▼]

This article investigates the secure energy efficiency (EE) optimization problem in a cognitive satellite-terrestrial network with a capable eavesdropper. The objective is to maximize the secure EE for the primary satellite network while satisfying the allowable signal-to-interference-plus-noise ratio requirements of the secondary and primary users along within the transmit power limitation of both satellite and the terrestrial base station. Owing to the nonconvexity and intractability of the original optimization problem, a beamforming scheme and associated transformation algorithms are proposed by jointly applying the Taylor approximation, fraction programming, and alternating search to cope with the implementation difficulty. The key is to convert the original optimization problem into a simple convex framework and obtain the optimal solution step by step. Finally, numerical simulations are given to verify the feasibility and practicability of the proposed optimization algorithms. [less ▲]

Detailed reference viewed: 42 (4 UL)
Full Text
Peer Reviewed
See detailThe Application of Power-Domain Non-Orthogonal Multiple Access in Satellite Communication Networks
Yan, Xiaojuan; An, Kang; Liang, Tao et al

in IEEE Access (2019), 7

Satellite communication networks are expected to be indispensable as part of an integrated complement for the upcoming 5G networks since they can provide the most comprehensive coverage and reliable ... [more ▼]

Satellite communication networks are expected to be indispensable as part of an integrated complement for the upcoming 5G networks since they can provide the most comprehensive coverage and reliable connection for areas where are economically unviable and/or difficult to deploy terrestrial infrastructures. Meanwhile, the power-domain non-orthogonal multiple access (NOMA), which can serve multiple users simultaneously within the same time/frequency block, has been viewed as another promising strategy used in the 5G network to provide high spectral efficiency and resource utilization. In this paper, we introduce a general overview of the application of the NOMA to various satellite architectures for the benefits of meeting the availability, coverage, and efficiency requirements targeted by the 5G. The fundamental and ubiquitous features of satellite link budget are first reviewed. Then, the advantage and benefit of introducing the NOMA scheme in various satellite architectures, such as conventional downlink/uplink satellite networks, cognitive satellite terrestrial networks, and cooperative satellite networks with satellite/terrestrial relays, are provided, along with the motivation and research methodology for each scenario. Finally, this paper reviews the potential directions for future research. [less ▲]

Detailed reference viewed: 43 (0 UL)