References of "Li, Y."
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailHybrid Analog-Digital Precoding for mmWave Coexisting in 5G-Satellite Integrated Network
Peng, D.; Li, Y.; Chatzinotas, Symeon UL et al

in 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, title=Hybrid Analog-Digital Precoding for mmWave Coexisting in 5G-Satellite Integrated Network (2020, October 08)

Integrating massive multiple-input multiple-output (MIMO) into satellite network is regarded as an effective strategy to improve the spectral efficiency as well as the coverage of satellite communication ... [more ▼]

Integrating massive multiple-input multiple-output (MIMO) into satellite network is regarded as an effective strategy to improve the spectral efficiency as well as the coverage of satellite communication. However, the inevitable intra-system and inter-system interference deteriorate the total performance of system. In this paper, we consider precoding in the 5G Satellite Integrated Network (5GSIN) with the deployment of Massive MIMO and propagation of shared millimeter-wave (mmWave) link. Taking the requirements of both frequency efficiency and energy assumption into account, a hybrid analog and digital pre-coding scheme in the specific scenario of 5GSIN is proposed. We model sum rate maximization problem for both of satellite and terrestrial system that incorporates maximum power constrains and minimum achievable rate requirements and formulate to a convex power allocation problem with Minimum Mean Square Error (MMSE) norm and Logarithmic Linearization method. In order to balance between performance and complexity, we propose an analog and digital separated hybrid precoding algorithm to mitigate intra-system interference. Moreover, an iterative power allocation with interference mitigation algorithm is also devised to mitigate interference from satellite to terrestrial link so that power allocation can be executed by generalized iterative algorithm. Simulation results show that our proposed hybrid precoding algorithm in 5GSIN can improve the overall spectral efficiency with a small amount of iterations. [less ▲]

Detailed reference viewed: 89 (1 UL)
Full Text
Peer Reviewed
See detailPerformance Limits of Cognitive Uplink FSS and Terrestrial FS for Ka-Band
An, K.; Liang, T.; Zheng, Gan UL et al

in IEEE Transactions on Aerospace and Electronic Systems (2018)

This paper investigates the performance limits of cognitive uplink Fixed Satellite Service (FSS) and terrestrial Fixed Service (FS) operating in 27.5-29.5 GHz for Ka-band. In light of standard ... [more ▼]

This paper investigates the performance limits of cognitive uplink Fixed Satellite Service (FSS) and terrestrial Fixed Service (FS) operating in 27.5-29.5 GHz for Ka-band. In light of standard International Telecommunications Union (ITU) recommendations and a rain fading channel model, we analyze the interference level at the FS receiver by considering the channel statistical properties, propagation losses and antenna patterns. By employing the interference constraint criterion at the FS, an analytical expression for the capacity of the cognitive uplink FSS is derived, which is useful in understanding the performance limits and the potential application of the considered coexistence scenario. Simulation results are carried out to verify the theoretical derivations, and highlight the impact of key parameters on the performance limits. [less ▲]

Detailed reference viewed: 131 (1 UL)
Full Text
Peer Reviewed
See detailRobust H∞ feedback control for uncertain stochastic delayed genetic regulatory networks with additive and multiplicative noise
Pan, Wei UL; Wang, Z.; Gao, H. et al

in International Journal of Robust and Nonlinear Control (2010), 20(18), 2093-2107

Noises are ubiquitous in genetic regulatory networks (GRNs). Gene regulation is inherently a stochastic process because of intrinsic and extrinsic noises that cause kinetic parameter variations and basal ... [more ▼]

Noises are ubiquitous in genetic regulatory networks (GRNs). Gene regulation is inherently a stochastic process because of intrinsic and extrinsic noises that cause kinetic parameter variations and basal rate disturbance. Time delays are usually inevitable due to different biochemical reactions in such GRNs. In this paper, a delayed stochastic model with additive and multiplicative noises is utilized to describe stochastic GRNs. A feedback gene controller design scheme is proposed to guarantee that the GRN is mean-square asymptotically stable with noise attenuation, where the structure of the controllers can be specified according to engineering requirements. By applying control theory and mathematical tools, the analytical solution to the control design problem is given, which helps to provide some insight into synthetic biology and systems biology. The control scheme is employed in a three-gene network to illustrate the applicability and usefulness of the design. [less ▲]

Detailed reference viewed: 104 (0 UL)
Full Text
Peer Reviewed
See detailOn multistability of delayed genetic regulatory networks with multivariable regulation functions
Pan, Wei UL; Wang, Z.; Gao, H. et al

in Mathematical Biosciences (2010), 228(1), 100-109

Many genetic regulatory networks (GRNs) have the capacity to reach different stable states. This capacity is defined as multistability which is an important regulation mechanism. Multiple time delays and ... [more ▼]

Many genetic regulatory networks (GRNs) have the capacity to reach different stable states. This capacity is defined as multistability which is an important regulation mechanism. Multiple time delays and multivariable regulation functions are usually inevitable in such GRNs. In this paper, multistability of GRNs is analyzed by applying the control theory and mathematical tools. This study is to provide a theoretical tool to facilitate the design of synthetic gene circuit with multistability in the perspective of control theory. By transforming such GRNs into a new and uniform mathematical formulation, we put forward a general sector-like regulation function that is capable of quantifying the regulation effects in a more precise way. By resorting to up-to-date techniques, a novel Lyapunov–Krasovskii functional (LKF) is introduced for achieving delay dependence to ensure less conservatism. New conditions are then proposed to ensure the multistability of a GRN in the form of linear matrix inequalities (LMIs) that are dependent on the delays. Our multistability conditions are applicable to several frequently used regulation functions especially the multivariable ones. Two examples are employed to illustrate the applicability and usefulness of the developed theoretical results. [less ▲]

Detailed reference viewed: 87 (0 UL)