References of "Lewis-Smith, David"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailModeling seizures in the Human Phenotype Ontology according to contemporary ILAE concepts makes big phenotypic data tractable
Lewis-Smith, David; Galer, Peter D.; Balagura, Ganna et al

in Epilepsia (2021), n/a(n/a),

Abstract Objective The clinical features of epilepsy determine how it is defined, which in turn guides management. Therefore, consideration of the fundamental clinical entities that comprise an epilepsy ... [more ▼]

Abstract Objective The clinical features of epilepsy determine how it is defined, which in turn guides management. Therefore, consideration of the fundamental clinical entities that comprise an epilepsy is essential in the study of causes, trajectories, and treatment responses. The Human Phenotype Ontology (HPO) is used widely in clinical and research genetics for concise communication and modeling of clinical features, allowing extracted data to be harmonized using logical inference. We sought to redesign the HPO seizure subontology to improve its consistency with current epileptological concepts, supporting the use of large clinical data sets in high-throughput clinical and research genomics. Methods We created a new HPO seizure subontology based on the 2017 International League Against Epilepsy (ILAE) Operational Classification of Seizure Types, and integrated concepts of status epilepticus, febrile, reflex, and neonatal seizures at different levels of detail. We compared the HPO seizure subontology prior to, and following, our revision, according to the information that could be inferred about the seizures of 791 individuals from three independent cohorts: 2 previously published and 150 newly recruited individuals. Each cohort's data were provided in a different format and harmonized using the two versions of the HPO. Results The new seizure subontology increased the number of descriptive concepts for seizures 5-fold. The number of seizure descriptors that could be annotated to the cohort increased by 40 and the total amount of information about individuals' seizures increased by 38\%. The most important qualitative difference was the relationship of focal to bilateral tonic-clonic seizure to generalized-onset and focal-onset seizures. Significance We have generated a detailed contemporary conceptual map for harmonization of clinical seizure data, implemented in the official 2020-12-07 HPO release and freely available at hpo.jax.org. This will help to overcome the phenotypic bottleneck in genomics, facilitate reuse of valuable data, and ultimately improve diagnostics and precision treatment of the epilepsies. [less ▲]

Detailed reference viewed: 47 (0 UL)
Full Text
Peer Reviewed
See detailComputational analysis of 10,860 phenotypic annotations in individuals with SCN2A-related disorders.
Crawford, Katherine; Xian, Julie; Helbig, Katherine L. et al

in Genetics in medicine : official journal of the American College of Medical Genetics (2021), 23(7), 1263-1272

PURPOSE: Pathogenic variants in SCN2A cause a wide range of neurodevelopmental phenotypes. Reports of genotype-phenotype correlations are often anecdotal, and the available phenotypic data have not been ... [more ▼]

PURPOSE: Pathogenic variants in SCN2A cause a wide range of neurodevelopmental phenotypes. Reports of genotype-phenotype correlations are often anecdotal, and the available phenotypic data have not been systematically analyzed. METHODS: We extracted phenotypic information from primary descriptions of SCN2A-related disorders in the literature between 2001 and 2019, which we coded in Human Phenotype Ontology (HPO) terms. With higher-level phenotype terms inferred by the HPO structure, we assessed the frequencies of clinical features and investigated the association of these features with variant classes and locations within the Na(V)1.2 protein. RESULTS: We identified 413 unrelated individuals and derived a total of 10,860 HPO terms with 562 unique terms. Protein-truncating variants were associated with autism and behavioral abnormalities. Missense variants were associated with neonatal onset, epileptic spasms, and seizures, regardless of type. Phenotypic similarity was identified in 8/62 recurrent SCN2A variants. Three independent principal components accounted for 33% of the phenotypic variance, allowing for separation of gain-of-function versus loss-of-function variants with good performance. CONCLUSION: Our work shows that translating clinical features into a computable format using a standardized language allows for quantitative phenotype analysis, mapping the phenotypic landscape of SCN2A-related disorders in unprecedented detail and revealing genotype-phenotype correlations along a multidimensional spectrum. [less ▲]

Detailed reference viewed: 10 (2 UL)
Full Text
Peer Reviewed
See detailClimate change and epilepsy: Insights from clinical and basic science studies
Gulcebi, Medine I.; Bartolini, Emanuele; Lee, Omay et al

in Epilepsy and Behavior (2021), 116

Climate change is with us. As professionals who place value on evidence-based practice, climate change is something we cannot ignore. The current pandemic of the novel coronavirus, SARS-CoV-2, has ... [more ▼]

Climate change is with us. As professionals who place value on evidence-based practice, climate change is something we cannot ignore. The current pandemic of the novel coronavirus, SARS-CoV-2, has demonstrated how global crises can arise suddenly and have a significant impact on public health. Global warming, a chronic process punctuated by acute episodes of extreme weather events, is an insidious global health crisis needing at least as much attention. Many neurological diseases are complex chronic conditions influenced at many levels by changes in the environment. This review aimed to collate and evaluate reports from clinical and basic science about the relationship between climate change and epilepsy. The keywords climate change, seasonal variation, temperature, humidity, thermoregulation, biorhythm, gene, circadian rhythm, heat, and weather were used to search the published evidence. A number of climatic variables are associated with increased seizure frequency in people with epilepsy. Climate change-induced increase in seizure precipitants such as fevers, stress, and sleep deprivation (e.g. as a result of more frequent extreme weather events) or vector-borne infections may trigger or exacerbate seizures, lead to deterioration of seizure control, and affect neurological, cerebrovascular, or cardiovascular comorbidities and risk of sudden unexpected death in epilepsy. Risks are likely to be modified by many factors, ranging from individual genetic variation and temperature-dependent channel function, to housing quality and global supply chains. According to the results of the limited number of experimental studies with animal models of seizures or epilepsy, different seizure types appear to have distinct susceptibility to seasonal influences. Increased body temperature, whether in the context of fever or not, has a critical role in seizure threshold and seizure-related brain damage. Links between climate change and epilepsy are likely to be multifactorial, complex, and often indirect, which makes predictions difficult. We need more data on possible climate-driven altered risks for seizures, epilepsy, and epileptogenesis, to identify underlying mechanisms at systems, cellular, and molecular levels for better understanding of the impact of climate change on epilepsy. Further focussed data would help us to develop evidence for mitigation methods to do more to protect people with epilepsy from the effects of climate change. [less ▲]

Detailed reference viewed: 156 (1 UL)
Full Text
Peer Reviewed
See detailSemantic Similarity Analysis Reveals Robust Gene-Disease Relationships in Developmental and Epileptic Encephalopathies
Galer, Peter D.; Ganesan, Shiva; Lewis-Smith, David et al

in The American Journal of Human Genetics (2020), 107(4), 683-697

Summary 2.1 × 10−5) and “focal clonic seizures” (HP: 0002266; p = 8.9 × 10−6), STXBP1 with “absent speech” (HP: 0001344; p = 1.3 × 10−11), and SLC6A1 with “EEG with generalized slow activity” (HP: 0010845 ... [more ▼]

Summary 2.1 × 10−5) and “focal clonic seizures” (HP: 0002266; p = 8.9 × 10−6), STXBP1 with “absent speech” (HP: 0001344; p = 1.3 × 10−11), and SLC6A1 with “EEG with generalized slow activity” (HP: 0010845; p = 0.018). Of 41 genes with de novo variants in two or more individuals, 11 genes showed significant phenotypic similarity, including SCN1A (n = 16, p < 0.0001), STXBP1 (n = 14, p = 0.0021), and KCNB1 (n = 6, p = 0.011). Including genetic and phenotypic data of control subjects increased phenotypic similarity for all genetic etiologies, whereas the probability of observing de novo variants decreased, emphasizing the conceptual differences between semantic similarity analysis and approaches based on the expected number of de novo events. We demonstrate that HPO-based phenotype analysis captures unique profiles for distinct genetic etiologies, reflecting the breadth of the phenotypic spectrum in genetic epilepsies. Semantic similarity can be used to generate statistical evidence for disease causation analogous to the traditional approach of primarily defining disease entities through similar clinical features. [less ▲]

Detailed reference viewed: 43 (0 UL)
Full Text
Peer Reviewed
See detailThe Human Phenotype Ontology in 2021.
Köhler, Sebastian; Gargano, Michael; Matentzoglu, Nicolas et al

in Nucleic acids research (2020)

The Human Phenotype Ontology (HPO, https://hpo.jax.org) was launched in 2008 to provide a comprehensive logical standard to describe and computationally analyze phenotypic abnormalities found in human ... [more ▼]

The Human Phenotype Ontology (HPO, https://hpo.jax.org) was launched in 2008 to provide a comprehensive logical standard to describe and computationally analyze phenotypic abnormalities found in human disease. The HPO is now a worldwide standard for phenotype exchange. The HPO has grown steadily since its inception due to considerable contributions from clinical experts and researchers from a diverse range of disciplines. Here, we present recent major extensions of the HPO for neurology, nephrology, immunology, pulmonology, newborn screening, and other areas. For example, the seizure subontology now reflects the International League Against Epilepsy (ILAE) guidelines and these enhancements have already shown clinical validity. We present new efforts to harmonize computational definitions of phenotypic abnormalities across the HPO and multiple phenotype ontologies used for animal models of disease. These efforts will benefit software such as Exomiser by improving the accuracy and scope of cross-species phenotype matching. The computational modeling strategy used by the HPO to define disease entities and phenotypic features and distinguish between them is explained in detail.We also report on recent efforts to translate the HPO into indigenous languages. Finally, we summarize recent advances in the use of HPO in electronic health record systems. [less ▲]

Detailed reference viewed: 86 (0 UL)