References of "Lammert, Frank"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailCommon diseases alter the physiological age-related blood microRNA profile.
Fehlmann, Tobias; Lehallier, Benoit; Schaum, Nicholas et al

in Nature communications (2020), 11(1), 5958

Aging is a key risk factor for chronic diseases of the elderly. MicroRNAs regulate post-transcriptional gene silencing through base-pair binding on their target mRNAs. We identified nonlinear changes in ... [more ▼]

Aging is a key risk factor for chronic diseases of the elderly. MicroRNAs regulate post-transcriptional gene silencing through base-pair binding on their target mRNAs. We identified nonlinear changes in age-related microRNAs by analyzing whole blood from 1334 healthy individuals. We observed a larger influence of the age as compared to the sex and provide evidence for a shift to the 5' mature form of miRNAs in healthy aging. The addition of 3059 diseased patients uncovered pan-disease and disease-specific alterations in aging profiles. Disease biomarker sets for all diseases were different between young and old patients. Computational deconvolution of whole-blood miRNAs into blood cell types suggests that cell intrinsic gene expression changes may impart greater significance than cell abundance changes to the whole blood miRNA profile. Altogether, these data provide a foundation for understanding the relationship between healthy aging and disease, and for the development of age-specific disease biomarkers. [less ▲]

Detailed reference viewed: 36 (2 UL)
Full Text
Peer Reviewed
See detailmiR-873-5p targets mitochondrialGNMT-Complex II interface contributing tonon-alcoholic fatty liver disease
Fernández-Tussy, Pablo; Fernández-Ramos, David; Lopitz-Otsoa, Fernando et al

in Molecular Metabolism (2019)

Objective:Non-alcoholic fatty liver disease (NAFLD) is a complex pathology in which several dysfunctions, including alterations in metabolicpathways, mitochondrial functionality and unbalanced lipid ... [more ▼]

Objective:Non-alcoholic fatty liver disease (NAFLD) is a complex pathology in which several dysfunctions, including alterations in metabolicpathways, mitochondrial functionality and unbalanced lipid import/export, lead to lipid accumulation and progression to inflammation andfibrosis.The enzyme glycine N-methyltransferase (GNMT), the most important enzyme implicated in S-adenosylmethionine catabolism in the liver, isdownregulated during NAFLD progression. We have studied the mechanism involved in GNMT downregulation by its repressor microRNA miR-873-5p and the metabolic pathways affected in NAFLD as well as the benefit of recovery GNMT expression.Methods:miR-873-5p and GNMT expression were evaluated in liver biopsies of NAFLD/NASH patients. Differentin vitroandin vivoNAFLD murinemodels were used to assess miR-873-5p/GNMT involvement in fatty liver progression through targeting of the miR-873-5p as NAFLD therapy.Results:We describe a new function of GNMT as an essential regulator of Complex II activity in the electron transport chain in the mitochondria.In NAFLD, GNMT expression is controlled by miR-873-5p in the hepatocytes, leading to disruptions in mitochondrial functionality in a preclinicalmurine non-alcoholic steatohepatitis (NASH) model. Upregulation of miR-873-5p is shown in the liver of NAFLD/NASH patients, correlating withhepatic GNMT depletion. Importantly, NASH therapies based on anti-miR-873-5p resolve lipid accumulation, inflammation andfibrosis byenhancing fatty acidb-oxidation in the mitochondria. Therefore, miR-873-5p inhibitor emerges as a potential tool for NASH treatment.Conclusion:GNMT participates in the regulation of metabolic pathways and mitochondrial functionality through the regulation of Complex II activityin the electron transport chain. In NAFLD, GNMT is repressed by miR-873-5p and its targeting arises as a valuable therapeutic option for treatment. [less ▲]

Detailed reference viewed: 26 (1 UL)
Full Text
Peer Reviewed
See detailCytokine-mediated modulation of the hepatic miRNome: miR-146b-5p is an IL-6-inducible miRNA with multiple targets.
Kirchmeyer, Melanie; Servais, Florence UL; Hamdorf, Matthias et al

in Journal of leukocyte biology (2018)

Interleukin-6 (IL-6)-type cytokines play important roles in liver (patho-)biology. For instance, they regulate the acute phase response to inflammatory signals and are involved in hepatocarcinogenesis ... [more ▼]

Interleukin-6 (IL-6)-type cytokines play important roles in liver (patho-)biology. For instance, they regulate the acute phase response to inflammatory signals and are involved in hepatocarcinogenesis. Much is known about the regulation of protein-coding genes by cytokines whereas their effects on the miRNome is less well understood. We performed a microarray screen to identify microRNAs (miRNAs) in human hepatocytes which are modulated by IL-6-type cytokines. Using samples of 2 donors, 27 and 68 miRNAs (out of 1,733) were found to be differentially expressed upon stimulation with hyper-IL-6 (HIL-6) for up to 72 h, with an overlap of 15 commonly regulated miRNAs. qPCR validation revealed that miR-146b-5p was also consistently up-regulated in hepatocytes derived from 2 other donors. Interestingly, miR-146b-5p (but not miR-146a-5p) was induced by IL-6-type cytokines (HIL-6 and OSM) in non-transformed liver-derived PH5CH8 and THLE2 cells and in Huh-7 hepatoma cells, but not in HepG2 or Hep3B hepatoma cells. We did not find evidence for a differential regulation of miR-146b-5p expression by promoter methylation, also when analyzing the TCGA data set on liver cancer samples. Inducible overexpression of miR-146b-5p in PH5CH8 cells followed by RNA-Seq analysis revealed effects on multiple mRNAs, including those encoding IRAK1 and TRAF6 crucial for Toll-like receptor signaling. Indeed, LPS-mediated signaling was attenuated upon overexpression of miR-146b-5p, suggesting a regulatory loop to modulate inflammatory signaling in hepatocytes. Further validation experiments suggest DNAJC6, MAGEE1, MPHOSPH6, PPP2R1B, SLC10A3, SNRNP27, and TIMM17B to be novel targets for miR-146b-5p (and miR-146a-5p). [less ▲]

Detailed reference viewed: 105 (12 UL)
Peer Reviewed
See detailProteomic Characterization of Primary Mouse Hepatocytes in Collagen Monolayer and Sandwich Culture.
Orsini, Malina; Sperber, Saskia; Noor, Fozia UL et al

in Journal of cellular biochemistry (2017)

Dedifferentiation of primary hepatocytes in vitro makes their application in long-term studies difficult. Embedding hepatocytes in a sandwich of extracellular matrix is reported to delay the ... [more ▼]

Dedifferentiation of primary hepatocytes in vitro makes their application in long-term studies difficult. Embedding hepatocytes in a sandwich of extracellular matrix is reported to delay the dedifferentiation process to some extent. In this study, we compared the intracellular proteome of primary mouse hepatocytes (PMH) in conventional monolayer cultures (ML) to collagen sandwich culture (SW) after 1 day and 5 days of cultivation. Quantitative proteome analysis of PMH showed no differences between collagen SW and ML cultures after 1 day. Glycolysis and gluconeogenesis were strongly affected by long-term cultivation in both ML and SW cultures. Interestingly, culture conditions had no effect on cellular lipid metabolism. After 5 days, PMH in collagen SW and ML cultures exhibit characteristic indications of oxidative stress. However, in the SW culture the defense system against oxidative stress is significantly up-regulated to deal with this, whereas in the ML culture a down-regulation of these important enzymes takes place. Regarding the multiple effects of ROS and oxidative stress in cells, we conclude that the down-regulation of these enzymes seem to play a role in the loss of hepatic function observed in the ML cultivation. In addition, enzymes of the urea cycle were clearly down-regulated in ML culture. Proteomics confirms lack in oxidative stress defense mechanisms as the major characteristic of hepatocytes in monolayer cultures compared to sandwich cultures. J. Cell. Biochem. 9999: 1-8, 2017. (c) 2017 Wiley Periodicals, Inc. [less ▲]

Detailed reference viewed: 66 (0 UL)
Full Text
Peer Reviewed
See detailVariant PNPLA3 increases the HCC risk: prospective study in patients treated at the Saarland University Medical Center
Casper, Markus; Krawczyk, Marcin; Behrmann, Iris UL et al

in Zeitschrift für Gastroenterologie (2016), 54

Detailed reference viewed: 118 (1 UL)
Full Text
Peer Reviewed
See detailControlling complexity: the clinical relevance of mouse complex genetics.
Schughart, Klaus; Libert, Claude; Kas, Martien J. et al

in European journal of human genetics : EJHG (2013), 21(11), 1191-6

Experimental animal models are essential to obtain basic knowledge of the underlying biological mechanisms in human diseases. Here, we review major contributions to biomedical research and discoveries ... [more ▼]

Experimental animal models are essential to obtain basic knowledge of the underlying biological mechanisms in human diseases. Here, we review major contributions to biomedical research and discoveries that were obtained in the mouse model by using forward genetics approaches and that provided key insights into the biology of human diseases and paved the way for the development of novel therapeutic approaches. [less ▲]

Detailed reference viewed: 110 (2 UL)