References of "La Rosa, Alfio Fabio 50043214"
     in
Bookmark and Share    
Full Text
See detailSplitting fields, prime decomposition and modular forms]{Splitting fields of X^n-X-1 (particularly for n=5), prime decomposition and modular forms
Khare, Chandrashekhar; La Rosa, Alfio Fabio UL; Wiese, Gabor UL

E-print/Working paper (2022)

We study the splitting fields of the family of polynomials $f_n(X)= X^n-X-1$. This family of polynomials has been much studied in the literature and has some remarkable properties. Serre related the ... [more ▼]

We study the splitting fields of the family of polynomials $f_n(X)= X^n-X-1$. This family of polynomials has been much studied in the literature and has some remarkable properties. Serre related the function on primes $N_p(f_n)$, for a fixed $n \leq 4$ and $p$ a varying prime, which counts the number of roots of $f_n(X)$ in $\mathbb F_p$ to coefficients of modular forms. We study the case $n=5$, and relate $N_p(f_5)$ to mod $5$ modular forms over $\mathbb Q$, and to characteristic 0, parallel weight 1 Hilbert modular forms over $\mathbb Q(\sqrt{19 \cdot 151})$. [less ▲]

Detailed reference viewed: 29 (0 UL)