References of "Kwon, Yong-Jun 50038576"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailGene-corrected p.A30P SNCA patient-derived isogenic neurons rescue neuronal branching and function
Barbuti, Peter A; Ohnmacht, Jochen UL; Santos, Bruno FR et al

in Scientific Reports (2021), 11

Parkinson’s disease (PD) is characterised by the degeneration of A9 dopaminergic neurons and the pathological accumulation of alpha-synuclein. The p.A30P SNCA mutation generates the pathogenic form of the ... [more ▼]

Parkinson’s disease (PD) is characterised by the degeneration of A9 dopaminergic neurons and the pathological accumulation of alpha-synuclein. The p.A30P SNCA mutation generates the pathogenic form of the alpha-synuclein protein causing an autosomal-dominant form of PD. There are limited studies assessing pathogenic SNCA mutations in patient-derived isogenic cell models. Here we provide a functional assessment of dopaminergic neurons derived from a patient harbouring the p.A30P SNCA mutation. Using two clonal gene-corrected isogenic cell lines we identified image-based phenotypes showing impaired neuritic processes. The pathological neurons displayed impaired neuronal activity, reduced mitochondrial respiration, an energy deficit, vulnerability to rotenone, and transcriptional alterations in lipid metabolism. Our data describes for the first time the mutation-only effect of the p.A30P SNCA mutation on neuronal function, supporting the use of isogenic cell lines in identifying image-based pathological phenotypes that can serve as an entry point for future disease-modifying compound screenings and drug discovery strategies. [less ▲]

Detailed reference viewed: 35 (1 UL)
Full Text
Peer Reviewed
See detailPatient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology.
Golebiewska, Anna UL; Hau, Ann-Christin; Oudin, Anaïs et al

in Acta Neuropathologica (2020)

Patient-based cancer models are essential tools for studying tumor biology and for the assessment of drug responses in a translational context. We report the establishment a large cohort of unique ... [more ▼]

Patient-based cancer models are essential tools for studying tumor biology and for the assessment of drug responses in a translational context. We report the establishment a large cohort of unique organoids and patient-derived orthotopic xenografts (PDOX) of various glioma subtypes, including gliomas with mutations in IDH1, and paired longitudinal PDOX from primary and recurrent tumors of the same patient. We show that glioma PDOXs enable long-term propagation of patient tumors and represent clinically relevant patient avatars that retain histopathological, genetic, epigenetic, and transcriptomic features of parental tumors. We find no evidence of mouse-specific clonal evolution in glioma PDOXs. Our cohort captures individual molecular genotypes for precision medicine including mutations in IDH1, ATRX, TP53, MDM2/4, amplification of EGFR, PDGFRA, MET, CDK4/6, MDM2/4, and deletion of CDKN2A/B, PTCH, and PTEN. Matched longitudinal PDOX recapitulate the limited genetic evolution of gliomas observed in patients following treatment. At the histological level, we observe increased vascularization in the rat host as compared to mice. PDOX-derived standardized glioma organoids are amenable to high-throughput drug screens that can be validated in mice. We show clinically relevant responses to temozolomide (TMZ) and to targeted treatments, such as EGFR and CDK4/6 inhibitors in (epi)genetically defined subgroups, according to MGMT promoter and EGFR/CDK status, respectively. Dianhydrogalactitol (VAL-083), a promising bifunctional alkylating agent in the current clinical trial, displayed high therapeutic efficacy, and was able to overcome TMZ resistance in glioblastoma. Our work underscores the clinical relevance of glioma organoids and PDOX models for translational research and personalized treatment studies and represents a unique publicly available resource for precision oncology. [less ▲]

Detailed reference viewed: 168 (14 UL)
Full Text
Peer Reviewed
See detailPrimary and recurrent glioma patient-derived orthotopic xenografts (PDOX) represent relevant patient avatars for precision medicine
Golebiewska, Anna UL; Hau, Ann-Christin; Oudin, Anais et al

E-print/Working paper (2020)

Patient-derived cancer models are essential tools for studying tumor biology and preclinical interventions. Here, we show that glioma patient-derived orthotopic xenografts (PDOXs) enable long-term ... [more ▼]

Patient-derived cancer models are essential tools for studying tumor biology and preclinical interventions. Here, we show that glioma patient-derived orthotopic xenografts (PDOXs) enable long-term propagation of patient tumors and represent clinically relevant patient avatars. We created a large collection of PDOXs from primary and recurrent gliomas with and without mutations in IDH1, which retained histopathological, genetic, epigenetic and transcriptomic features of patient tumors with no mouse-specific clonal evolution. Longitudinal PDOX models recapitulate the limited genetic evolution of gliomas observed in patient tumors following treatment. PDOX-derived standardized tumor organoid cultures enabled assessment of drug responses, which were validated in mice. PDOXs showed clinically relevant responses to Temozolomide and to targeted treatments such as EGFR and CDK4/6 inhibitors in (epi)genetically defined groups, according to MGMT promoter and EGFR/CDK status respectively. Dianhydrogalactitol, a bifunctional alkylating agent, showed promising potential against glioblastoma. Our study underlines the clinical relevance of glioma PDOX models for translational research and personalized treatment studies. [less ▲]

Detailed reference viewed: 136 (6 UL)