References of "Kunath, Benoît 50033315"
     in
Bookmark and Share    
Full Text
See detailForecasting of a complex microbial community using meta-omics
Delogu, Francesco UL; Kunath, Benoît UL; Queirós, P. M. et al

E-print/Working paper (2022)

Microbial communities are complex assemblages whose dynamics are shaped by abiotic and biotic factors. A major challenge concerns correctly forecasting the community behaviour in the future. In this ... [more ▼]

Microbial communities are complex assemblages whose dynamics are shaped by abiotic and biotic factors. A major challenge concerns correctly forecasting the community behaviour in the future. In this context, communities in biological wastewater treatment plants (BWWTPs) represent excellent model systems, because forecasting them is required to ultimately control and operate the plants in a sustainable manner. Here, we forecast the microbial community from the water-air interface of the anaerobic tank of a BWWTP via longitudinal meta-omics (metagenomics, metatranscriptomics and metaproteomics) data covering 14 months at weekly intervals. We extracted all the available time-dependent information, summarised it in 17 temporal signals (explaining 91.1 of the temporal variance) and linked them over time to rebuild the sequence of ecological phenomena behind the community dynamics. We forecasted the signals over the following five years and tested the predictions with 21 extra samples. We were able to correctly forecast five signals accounting for 22.5 of the time-dependent information in the system and generate mechanistic predictions on the ecological events in the community (e.g. a predation cycle involving bacteria, viruses and amoebas). Through the forecasting of the 17 signals and the environmental variables readings we reconstructed the gene abundance and expression for the following 5 years, showing a nearly perfect trend prediction (coefficient of determination >= 0.97) for the first 2 years. The study demonstrates the maturity of microbial ecology to forecast composition and gene expression of open microbial ecosystems using year-spanning interactions between community cycles and environmental parameters. [less ▲]

Detailed reference viewed: 41 (4 UL)
Full Text
Peer Reviewed
See detailMobilome-driven segregation of the resistome in biological wastewater treatment
de Nies, Laura UL; Busi, Susheel Bhanu UL; Kunath, Benoît UL et al

in eLife (2022), 11

Biological wastewater treatment plants (BWWTP) are considered to be hotspots of evolution and subsequent spread of antimicrobial resistance (AMR). Mobile genetic elements (MGEs) promote the mobilization ... [more ▼]

Biological wastewater treatment plants (BWWTP) are considered to be hotspots of evolution and subsequent spread of antimicrobial resistance (AMR). Mobile genetic elements (MGEs) promote the mobilization and dissemination of antimicrobial resistance genes (ARGs) and are thereby critical mediators of AMR within the BWWTP microbial community. At present, it is unclear whether specific AMR categories are differentially disseminated via bacteriophages (phages) or plasmids. To understand the segregation of AMR in relation to MGEs, we analyzed meta-omic (metagenomic, metatranscriptomic and metaproteomic) data systematically collected over 1.5 years from a BWWTP. Our results showed a core group of fifteen AMR categories which were found across all timepoints. Some of these AMR categories were disseminated exclusively (bacitracin) or primarily (aminoglycoside, MLS and sulfonamide) via plasmids or phages (fosfomycin and peptide), whereas others were disseminated equally by both MGEs. Combined and timepoint-specific analyses of gene, transcript and protein abundances further demonstrated that aminoglycoside, bacitracin and sulfonamide resistance genes were expressed more by plasmids, in contrast to fosfomycin and peptide AMR expression by phages, thereby validating our genomic findings. In the analyzed communities, the dominant taxon Candidatus Microthrix parvicella was a major contributor to several AMR categories whereby its plasmids primarily mediated aminoglycoside resistance. Importantly, we also found AMR associated with ESKAPEE pathogens within the BWWTP, for which MGEs also contributed differentially to the dissemination of ARGs. Collectively our findings pave the way towards understanding the segmentation of AMR within MGEs, thereby shedding new light on resistome populations and their mediators, essential elements that are of immediate relevance to human health. [less ▲]

Detailed reference viewed: 33 (0 UL)
Full Text
Peer Reviewed
See detailThe Metaproteomics Initiative: a coordinated approach for propelling the functional characterization of microbiomes
Van den Bossche, Tim; Arntzen, Magnus; Becher, Dörte et al

in Microbiome (2021), 9(1), 243

Detailed reference viewed: 42 (0 UL)
Full Text
Peer Reviewed
See detailFunctional meta-omics provide critical insights into long- and short-read assemblies
Galata, Valentina UL; Busi, Susheel Bhanu UL; Kunath, Benoît UL et al

in Briefings in Bioinformatics (2021)

Real-world evaluations of metagenomic reconstructions are challenged by distinguishing reconstruction artifacts from genes and proteins present in situ. Here, we evaluate short-read-only, long-read-only ... [more ▼]

Real-world evaluations of metagenomic reconstructions are challenged by distinguishing reconstruction artifacts from genes and proteins present in situ. Here, we evaluate short-read-only, long-read-only and hybrid assembly approaches on four different metagenomic samples of varying complexity. We demonstrate how different assembly approaches affect gene and protein inference, which is particularly relevant for downstream functional analyses. For a human gut microbiome sample, we use complementary metatranscriptomic and metaproteomic data to assess the metagenomic data-based protein predictions. Our findings pave the way for critical assessments of metagenomic reconstructions. We propose a reference-independent solution, which exploits the synergistic effects of multi-omic data integration for the in situ study of microbiomes using long-read sequencing data. [less ▲]

Detailed reference viewed: 73 (6 UL)
Full Text
Peer Reviewed
See detailCritical Assessment of MetaProteome Investigation (CAMPI): a multi-laboratory comparison of established workflows
Van Den Bossche, Tim; Kunath, Benoît UL; Schallert, Kay et al

in Nature Communications (2021), 12(1), 7305

Abstract Metaproteomics has matured into a powerful tool to assess functional interactions in microbial communities. While many metaproteomic workflows are available, the impact of method choice on ... [more ▼]

Abstract Metaproteomics has matured into a powerful tool to assess functional interactions in microbial communities. While many metaproteomic workflows are available, the impact of method choice on results remains unclear. Here, we carry out a community-driven, multi-laboratory comparison in metaproteomics: the critical assessment of metaproteome investigation study (CAMPI). Based on well-established workflows, we evaluate the effect of sample preparation, mass spectrometry, and bioinformatic analysis using two samples: a simplified, laboratory-assembled human intestinal model and a human fecal sample. We observe that variability at the peptide level is predominantly due to sample processing workflows, with a smaller contribution of bioinformatic pipelines. These peptide-level differences largely disappear at the protein group level. While differences are observed for predicted community composition, similar functional profiles are obtained across workflows. CAMPI demonstrates the robustness of present-day metaproteomics research, serves as a template for multi-laboratory studies in metaproteomics, and provides publicly available data sets for benchmarking future developments. [less ▲]

Detailed reference viewed: 55 (0 UL)
Full Text
Peer Reviewed
See detailRoles of bacteriophages, plasmids and CRISPR immunity in microbial community dynamics revealed using time-series integrated meta-omics
Martinez Arbas, Susana UL; Narayanasamy, Shaman; Herold, Malte et al

in Nature Microbiology (2020)

Viruses and plasmids (invasive mobile genetic elements (iMGEs)) have important roles in shaping microbial communities, but their dynamic interactions with CRISPR-based immunity remain unresolved. We ... [more ▼]

Viruses and plasmids (invasive mobile genetic elements (iMGEs)) have important roles in shaping microbial communities, but their dynamic interactions with CRISPR-based immunity remain unresolved. We analysed generation-resolved iMGE–host dynamics spanning one and a half years in a microbial consortium from a biological wastewater treatment plant using integrated meta-omics. We identified 31 bacterial metagenome-assembled genomes encoding complete CRISPR–Cas systems and their corresponding iMGEs. CRISPR-targeted plasmids outnumbered their bacteriophage counterparts by at least fivefold, highlighting the importance of CRISPR-mediated defence against plasmids. Linear modelling of our time-series data revealed that the variation in plasmid abundance over time explained more of the observed community dynamics than phages. Community-scale CRISPR-based plasmid–host and phage–host interaction networks revealed an increase in CRISPR-mediated interactions coinciding with a decrease in the dominant ‘Candidatus Microthrix parvicella’ population. Protospacers were enriched in sequences targeting genes involved in the transmission of iMGEs. Understanding the factors shaping the fitness of specific populations is necessary to devise control strategies for undesirable species and to predict or explain community-wide phenotypes. [less ▲]

Detailed reference viewed: 160 (9 UL)
Full Text
Peer Reviewed
See detailIntegration of time-series meta-omics data reveals how microbial ecosystems respond to disturbance
Herold, Malte; Martinez Arbas, Susana UL; Narayanasamy, Shaman et al

in Nature Communications (2020)

The development of reliable, mixed-culture biotechnological processes hinges on understanding how microbial ecosystems respond to disturbances. Here we reveal extensive phenotypic plasticity and niche ... [more ▼]

The development of reliable, mixed-culture biotechnological processes hinges on understanding how microbial ecosystems respond to disturbances. Here we reveal extensive phenotypic plasticity and niche complementarity in oleaginous microbial populations from a biological wastewater treatment plant. We perform meta-omics analyses (metagenomics, metatranscriptomics, metaproteomics and metabolomics) on in situ samples over 14 months at weekly intervals. Based on 1,364 de novo metagenome-assembled genomes, we uncover four distinct fundamental niche types. Throughout the time-series, we observe a major, transient shift in community structure, coinciding with substrate availability changes. Functional omics data reveals extensive variation in gene expression and substrate usage amongst community members. Ex situ bioreactor experiments confirm that responses occur within five hours of a pulse disturbance, demonstrating rapid adaptation by specific populations. Our results show that community resistance and resilience are a function of phenotypic plasticity and niche complementarity, and set the foundation for future ecological engineering efforts. [less ▲]

Detailed reference viewed: 187 (21 UL)