References of "Kumar, Niraj"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailGenetic Architecture of Parkinson's Disease in the Indian Population: Harnessing Genetic Diversity to Address Critical Gaps in Parkinson's Disease Research.
Rajan, Roopa; Divya, K. P.; Kandadai, Rukmini Mridula et al

in Frontiers in neurology (2020), 11

Over the past two decades, our understanding of Parkinson's disease (PD) has been gleaned from the discoveries made in familial and/or sporadic forms of PD in the Caucasian population. The transferability ... [more ▼]

Over the past two decades, our understanding of Parkinson's disease (PD) has been gleaned from the discoveries made in familial and/or sporadic forms of PD in the Caucasian population. The transferability and the clinical utility of genetic discoveries to other ethnically diverse populations are unknown. The Indian population has been under-represented in PD research. The Genetic Architecture of PD in India (GAP-India) project aims to develop one of the largest clinical/genomic bio-bank for PD in India. Specifically, GAP-India project aims to: (1) develop a pan-Indian deeply phenotyped clinical repository of Indian PD patients; (2) perform whole-genome sequencing in 500 PD samples to catalog Indian genetic variability and to develop an Indian PD map for the scientific community; (3) perform a genome-wide association study to identify novel loci for PD and (4) develop a user-friendly web-portal to disseminate results for the scientific community. Our "hub-spoke" model follows an integrative approach to develop a pan-Indian outreach to develop a comprehensive cohort for PD research in India. The alignment of standard operating procedures for recruiting patients and collecting biospecimens with international standards ensures harmonization of data/bio-specimen collection at the beginning and also ensures stringent quality control parameters for sample processing. Data sharing and protection policies follow the guidelines established by local and national authorities.We are currently in the recruitment phase targeting recruitment of 10,200 PD patients and 10,200 healthy volunteers by the end of 2020. GAP-India project after its completion will fill a critical gap that exists in PD research and will contribute a comprehensive genetic catalog of the Indian PD population to identify novel targets for PD. [less ▲]

Detailed reference viewed: 102 (4 UL)
Full Text
Peer Reviewed
See detailStochastically driven single-level quantum dot: A nanoscale finite-time thermodynamic machine and its various operational modes
Esposito, Massimiliano UL; Kumar, Niraj; Lindenberg, Katja et al

in Physical Review E (2012), 85(3),

We describe a single-level quantum dot in contact with two leads as a nanoscale finite-time thermodynamic machine. The dot is driven by an external stochastic force that switches its energy between two ... [more ▼]

We describe a single-level quantum dot in contact with two leads as a nanoscale finite-time thermodynamic machine. The dot is driven by an external stochastic force that switches its energy between two values. In the isothermal regime, it can operate as a rechargeable battery by generating an electric current against the applied bias in response to the stochastic driving and then redelivering work in the reverse cycle. This behavior is reminiscent of the Parrondo paradox. If there is a thermal gradient the device can function as a work-generating thermal engine or as a refrigerator that extracts heat from the cold reservoir via the work input of the stochastic driving. The efficiency of the machine at maximum power output is investigated for each mode of operation, and universal features are identified. [less ▲]

Detailed reference viewed: 124 (3 UL)
Full Text
Peer Reviewed
See detailThermodynamics of a stochastic twin elevator
Kumar, Niraj; Van den Broeck, Christian; Esposito, Massimiliano UL et al

in Physical Review E (2011), 84(5),

We study the nonequilibrium thermodynamics of a single particle with two available energy levels, in contact with a classical (Maxwell-Boltzmann) or quantum (Bose-Einstein) heat bath. The particle can ... [more ▼]

We study the nonequilibrium thermodynamics of a single particle with two available energy levels, in contact with a classical (Maxwell-Boltzmann) or quantum (Bose-Einstein) heat bath. The particle can undergo transitions between the levels via thermal activation or deactivation. The energy levels are alternately raised at a given rate regardless of occupation by the particle, maintaining a fixed energy gap equal to ε between them. We explicitly calculate the work, heat, and entropy production rates. The efficiency in both the classical and the quantum case goes to a limit between 100 and 50% that depends on the relative rates of particle transitions and level elevation. In the classical problem we explicitly find the large deviation functions for heat, work, and internal energy. [less ▲]

Detailed reference viewed: 733 (0 UL)