References of "Krier, Jessy 50017392"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailOccurrence and Distribution of Pharmaceuticals and Their Transformation Products in Luxembourgish Surface Waters
Singh, Randolph UL; Lai, Adelene UL; Krier, Jessy UL et al

in ACS Environmental Au (2021)

Pharmaceuticals and their transformation products (TPs) are continuously released into the aquatic environment via anthropogenic activity. To expand knowledge on the presence of pharmaceuticals and their ... [more ▼]

Pharmaceuticals and their transformation products (TPs) are continuously released into the aquatic environment via anthropogenic activity. To expand knowledge on the presence of pharmaceuticals and their known TPs in Luxembourgish rivers, 92 samples collected during routine monitoring events between 2019 and 2020 were investigated using nontarget analysis. Water samples were concentrated using solid-phase extraction and then analyzed using liquid chromatography coupled to a high-resolution mass spectrometer. Suspect screening was performed using several open source computational tools and resources including Shinyscreen (https://git-r3lab.uni.lu/eci/shinyscreen/), MetFrag (https://msbi.ipb-halle.de/MetFrag/), PubChemLite (https://zenodo.org/record/4432124), and MassBank (https://massbank.eu/MassBank/). A total of 94 pharmaceuticals, 88 confirmed at a level 1 confidence (86 of which could be quantified, two compounds too low to be quantified) and six identified at level 2a, were found to be present in Luxembourg rivers. Pharmaceutical TPs (12) were also found at a level 2a confidence. The pharmaceuticals were present at median concentrations up to 214 ng/L, with caffeine having a median concentration of 1424 ng/L. Antihypertensive drugs (15), psychoactive drugs (15), and antimicrobials (eight) were the most detected groups of pharmaceuticals. A spatiotemporal analysis of the data revealed areas with higher concentrations of the pharmaceuticals, as well as differences in pharmaceutical concentrations between 2019 and 2020. The results of this work will help guide activities for improving water management in the country and set baseline data for continuous monitoring and screening efforts, as well as for further open data and software developments. [less ▲]

Detailed reference viewed: 77 (3 UL)
Full Text
See detailDiscovering Pesticides and their Transformation Products in Luxembourg Waters using Open Cheminformatics Approaches
Krier, Jessy UL; Singh, Randolph UL; Kondic, Todor UL et al

E-print/Working paper (2021)

Abstract The diversity of hundreds of thousands of potential organic pollutants and the lack of (publicly available) information about many of them is a huge challenge for environmental sciences ... [more ▼]

Abstract The diversity of hundreds of thousands of potential organic pollutants and the lack of (publicly available) information about many of them is a huge challenge for environmental sciences, engineering, and regulation. Suspect screening based on high-resolution liquid chromatography-mass spectrometry (LC-HRMS) has enormous potential to help characterize the presence of these chemicals in our environment, enabling the detection of known and newly emerging pollutants, as well as their potential transformation products (TPs). Here, suspect list creation (focusing on pesticides relevant for Luxembourg, incorporating data sources in 4 languages) was coupled to an automated retrieval of related TPs from PubChem based on high confidence suspect hits, to screen for pesticides and their TPs in Luxembourgish river samples. A computational workflow was established to combine LC-HRMS analysis and pre-screening of the suspects (including automated quality control steps), with spectral annotation to determine which pesticides and, in a second step, their related TPs may be present in the samples. The data analysis with Shinyscreen (https://git-r3lab.uni.lu/eci/shinyscreen/), an open source software developed in house, coupled with custom-made scripts, revealed the presence of 162 potential pesticide masses and 135 potential TP masses in the samples. Further identification of these mass matches was performed using the open source MetFrag (https://msbi.ipb-halle.de/MetFrag/). Eventual target analysis of 36 suspects resulted in 31 pesticides and TPs confirmed at Level-1 (highest confidence), and five pesticides and TPs not confirmed due to different retention times. Spatio-temporal analysis of the results showed that TPs and pesticides followed similar trends, with a maximum number of potential detections in July. The highest detections were in the rivers Alzette and Mess and the lowest in the Sûre and Eisch. This study (a) added pesticides, classification information and related TPs into the open domain, (b) developed automated open source retrieval methods - both enhancing FAIRness (Findability, Accessibility, Interoperability and Reusability) of the data and methods; and (c) will directly support “L’Administration de la Gestion de l’Eau” on further monitoring steps in Luxembourg. [less ▲]

Detailed reference viewed: 73 (3 UL)
Full Text
See detailOccurrence and Distribution of Pharmaceuticals and their Transformation Products in Luxembourgish Surface Waters
Singh, Randolph UL; Lai, Adelene UL; Krier, Jessy UL et al

E-print/Working paper (2021)

This pre-print describes the analysis of pharmaceuticals and their transformation products in surface water samples collected in Luxembourg from 2019 to 2020. Details of the experimental and computational ... [more ▼]

This pre-print describes the analysis of pharmaceuticals and their transformation products in surface water samples collected in Luxembourg from 2019 to 2020. Details of the experimental and computational tools and workflows used are fully described in the manuscript. Links to the suspect lists, codes used, and data files are also provided. [less ▲]

Detailed reference viewed: 43 (0 UL)