References of "Krebiehl, Guido"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMitochondrial Morphology, Function and Homeostasis Are Impaired by Expression of an N-terminal Calpain Cleavage Fragment of Ataxin-3.
Harmuth, Tina; Prell-Schicker, Caroline; Weber, Jonasz J. et al

in Frontiers in Molecular Neuroscience (2018), 11

Alterations in mitochondrial morphology and function have been linked to neurodegenerative diseases, including Parkinson disease, Alzheimer disease and Huntington disease. Metabolic defects, resulting ... [more ▼]

Alterations in mitochondrial morphology and function have been linked to neurodegenerative diseases, including Parkinson disease, Alzheimer disease and Huntington disease. Metabolic defects, resulting from dysfunctional mitochondria, have been reported in patients and respective animal models of all those diseases. Spinocerebellar Ataxia Type 3 (SCA3), another neurodegenerative disorder, also presents with metabolic defects and loss of body weight in early disease stages although the possible role of mitochondrial dysfunction in SCA3 pathology is still to be determined. Interestingly, the SCA3 disease protein ataxin-3, which is predominantly localized in cytoplasm and nucleus, has also been associated with mitochondria in both its mutant and wildtype form. This observation provides an interesting link to a potential mitochondrial involvement of mutant ataxin-3 in SCA3 pathogenesis. Furthermore, proteolytic cleavage of ataxin-3 has been shown to produce toxic fragments and even overexpression of artificially truncated forms of ataxin-3 resulted in mitochondria deficits. Therefore, we analyzed the repercussions of expressing a naturally occurring N-terminal cleavage fragment of ataxin-3 and the influence of an endogenous expression of the S256 cleavage fragment in vitro and in vivo. In our study, expression of a fragment derived from calpain cleavage induced mitochondrial fragmentation and cristae alterations leading to a significantly decreased capacity of mitochondrial respiration and contributing to an increased susceptibility to apoptosis. Furthermore, analyzing mitophagy revealed activation of autophagy in the early pathogenesis with reduced lysosomal activity. In conclusion, our findings indicate that cleavage of ataxin-3 by calpains results in fragments which interfere with mitochondrial function and mitochondrial degradation processes. [less ▲]

Detailed reference viewed: 152 (1 UL)
Full Text
Peer Reviewed
See detailBalance is the challenge--the impact of mitochondrial dynamics in Parkinson's disease.
Burbulla, Lena F.; Krebiehl, Guido; Krüger, Rejko UL

in European journal of clinical investigation (2010), 40(11), 1048-60

Impaired mitochondrial function has been implicated in neurodegeneration in Parkinson's disease (PD) based on biochemical and pathoanatomical studies in brains of PD patients. This observation was further ... [more ▼]

Impaired mitochondrial function has been implicated in neurodegeneration in Parkinson's disease (PD) based on biochemical and pathoanatomical studies in brains of PD patients. This observation was further substantiated by the identification of exogenic toxins, i.e. complex I inhibitors that directly affect mitochondrial energy metabolism and cause Parkinsonism in humans and various animal models. Recently, insights into the underlying molecular signalling pathways leading to alterations in mitochondrial homeostasis were gained based on the functional characterization of mitoprotective genes identified in rare forms of inherited PD. Using in vitro and in vivo loss of function models of the Parkin, PINK1, DJ-1 and Omi/HtrA2 gene, the emerging field of mitochondrial dynamics in PD was established as being critical for the maintenance of mitochondrial function in neurons. This underscored the concept that mitochondria are highly dynamic organelles, which are tightly regulated to continuously adapt shape to functional and anatomical requirements during axonal transport, synaptic signalling, organelle degradation and cellular energy supply. The dissection of pathways involved in mitochondrial quality control clearly established the PINK1/Parkin-pathway in the clearance of dysfunctional mitochondria by autophagy and hints to a complex interplay between PD-associated proteins acting at the mitochondrial interface. The elucidation of this mitoprotective signalling network may help to define novel therapeutic targets for PD via molecular modelling of mitochondria and/or pharmacological modulation of mitochondrial dynamics. [less ▲]

Detailed reference viewed: 127 (1 UL)
Full Text
Peer Reviewed
See detailReduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ-1.
Krebiehl, Guido; Ruckerbauer, Sabine; Burbulla, Lena F. et al

in PloS one (2010), 5(2), 9367

BACKGROUND: Mitochondrial dysfunction and degradation takes a central role in current paradigms of neurodegeneration in Parkinson's disease (PD). Loss of DJ-1 function is a rare cause of familial PD ... [more ▼]

BACKGROUND: Mitochondrial dysfunction and degradation takes a central role in current paradigms of neurodegeneration in Parkinson's disease (PD). Loss of DJ-1 function is a rare cause of familial PD. Although a critical role of DJ-1 in oxidative stress response and mitochondrial function has been recognized, the effects on mitochondrial dynamics and downstream consequences remain to be determined. METHODOLOGY/PRINCIPAL FINDINGS: Using DJ-1 loss of function cellular models from knockout (KO) mice and human carriers of the E64D mutation in the DJ-1 gene we define a novel role of DJ-1 in the integrity of both cellular organelles, mitochondria and lysosomes. We show that loss of DJ-1 caused impaired mitochondrial respiration, increased intramitochondrial reactive oxygen species, reduced mitochondrial membrane potential and characteristic alterations of mitochondrial shape as shown by quantitative morphology. Importantly, ultrastructural imaging and subsequent detailed lysosomal activity analyses revealed reduced basal autophagic degradation and the accumulation of defective mitochondria in DJ-1 KO cells, that was linked with decreased levels of phospho-activated ERK2. CONCLUSIONS/SIGNIFICANCE: We show that loss of DJ-1 leads to impaired autophagy and accumulation of dysfunctional mitochondria that under physiological conditions would be compensated via lysosomal clearance. Our study provides evidence for a critical role of DJ-1 in mitochondrial homeostasis by connecting basal autophagy and mitochondrial integrity in Parkinson's disease. [less ▲]

Detailed reference viewed: 191 (8 UL)
Peer Reviewed
See detailA comprehensive genetic study of the proteasomal subunit S6 ATPase in German Parkinson's disease patients.
Wahl, Claudia; Kautzmann, Sabine; Krebiehl, Guido et al

in Journal of Neural Transmission (2008), 115(8), 1141-8

Dysfunction of proteasomal protein degradation is involved in neurodegeneration in Parkinson's disease (PD). Recently we identified the regulatory proteasomal subunit S6 ATPase as a novel interactor of ... [more ▼]

Dysfunction of proteasomal protein degradation is involved in neurodegeneration in Parkinson's disease (PD). Recently we identified the regulatory proteasomal subunit S6 ATPase as a novel interactor of synphilin-1, which is a substrate of the ubiquitin-ligase Parkin (PARK2) and an interacting protein of alpha-synuclein (PARK1). To further investigate a potential role in the pathogenesis of PD, we performed a detailed mutation analysis of the S6 ATPase gene in a large sample of 486 German sporadic and familial PD patients. Direct sequencing revealed two novel intronic variants. An insertion/deletion variant in intron 5 of the S6 ATPase gene was more frequent in patients compared to controls. Moreover, this variant was significantly more frequent in early-onset compared to late-onset PD patients. The identification of a genetic link between a regulatory proteasomal subunit and PD further underscores the relevance of disturbed protein degradation in PD. [less ▲]

Detailed reference viewed: 110 (1 UL)