References of "Konrath, Fabian"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailIdentification of New IkappaBalpha Complexes by an Iterative Experimental and Mathematical Modeling Approach.
Konrath, Fabian; Witt, Johannes; Sauter, Thomas UL et al

in PLoS computational biology (2014), 10(3), 1003528

The transcription factor nuclear factor kappa-B (NFkappaB) is a key regulator of pro-inflammatory and pro-proliferative processes. Accordingly, uncontrolled NFkappaB activity may contribute to the ... [more ▼]

The transcription factor nuclear factor kappa-B (NFkappaB) is a key regulator of pro-inflammatory and pro-proliferative processes. Accordingly, uncontrolled NFkappaB activity may contribute to the development of severe diseases when the regulatory system is impaired. Since NFkappaB can be triggered by a huge variety of inflammatory, pro-and anti-apoptotic stimuli, its activation underlies a complex and tightly regulated signaling network that also includes multi-layered negative feedback mechanisms. Detailed understanding of this complex signaling network is mandatory to identify sensitive parameters that may serve as targets for therapeutic interventions. While many details about canonical and non-canonical NFkappaB activation have been investigated, less is known about cellular IkappaBalpha pools that may tune the cellular NFkappaB levels. IkappaBalpha has so far exclusively been described to exist in two different forms within the cell: stably bound to NFkappaB or, very transiently, as unbound protein. We created a detailed mathematical model to quantitatively capture and analyze the time-resolved network behavior. By iterative refinement with numerous biological experiments, we yielded a highly identifiable model with superior predictive power which led to the hypothesis of an NFkappaB-lacking IkappaBalpha complex that contains stabilizing IKK subunits. We provide evidence that other but canonical pathways exist that may affect the cellular IkappaBalpha status. This additional IkappaBalpha:IKKgamma complex revealed may serve as storage for the inhibitor to antagonize undesired NFkappaB activation under physiological and pathophysiological conditions. [less ▲]

Detailed reference viewed: 78 (7 UL)
Full Text
Peer Reviewed
See detailAnalysing the role of UVB-induced translational inhibition and PP2Ac deactivation in NF-kappaB signalling using a minimal mathematical model.
Witt, Johannes; Konrath, Fabian; Sawodny, Oliver et al

in PLoS ONE (2012), 7(7), 40274

Activation of nuclear factor kappaB (NF-kappaB) by interleukin-1beta (IL-1) usually results in an anti-apoptotic activity that is rapidly terminated by a negative feedback loop involving NF-kappaB ... [more ▼]

Activation of nuclear factor kappaB (NF-kappaB) by interleukin-1beta (IL-1) usually results in an anti-apoptotic activity that is rapidly terminated by a negative feedback loop involving NF-kappaB dependent resynthesis of its own inhibitor IkappaBalpha. However, apoptosis induced by ultraviolet B radiation (UVB) is not attenuated, but significantly enhanced by co-stimulation with IL-1 in human epithelial cells. Under these conditions NF-kappaB remains constitutively active and turns into a pro-apoptotic factor by selectively repressing anti-apoptotic genes. Two different mechanisms have been separately proposed to explain UV-induced lack of IkappaBalpha recurrence: global translational inhibition as well as deactivation of the Ser/Thr phosphatase PP2Ac. Using mathematical modelling, we show that the systems behaviour requires a combination of both mechanisms, and we quantify their contribution in different settings. A mathematical model including both mechanisms is developed and fitted to various experimental data sets. A comparison of the model results and predictions with model variants lacking one of the mechanisms shows that both mechanisms are present in our experimental setting. The model is successfully validated by the prediction of independent data. Weak constitutive IKKbeta phosphorylation is shown to be a decisive process in IkappaBalpha degradation induced by UVB stimulation alone, but irrelevant for (co-)stimulations with IL-1. In silico knockout experiments show that translational inhibition is predominantly responsible for lack of IkappaBalpha recurrence following IL-1+UVB stimulation. In case of UVB stimulation alone, cooperation of both processes causes the observed decrease of IkappaBalpha. This shows that the processes leading to activation of transcription factor NF-kappaB upon stimulation with ultraviolet B radiation with and without interleukin-1 costimulation are more complex than previously thought, involving both a cross talk of UVB induced translational inhibition and PP2Ac deactivation. The importance of each of the mechanisms depends on the specific cellular setting. [less ▲]

Detailed reference viewed: 66 (4 UL)