References of "Kjaer, Kurt"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailGeodetic measurements reveal similarities between post–Last Glacial Maximum and present-day mass loss from the Greenland ice sheet
Knudsen, Shfaqat; Bamber, Ingo; Bevis, Michael et al

in Science Advances (2016), 2(9),

Accurate quantification of the millennial-scale mass balance of the Greenland ice sheet (GrIS) and its contribution to global sea-level rise remain challenging because of sparse in situ observations in ... [more ▼]

Accurate quantification of the millennial-scale mass balance of the Greenland ice sheet (GrIS) and its contribution to global sea-level rise remain challenging because of sparse in situ observations in key regions. Glacial isostatic adjustment (GIA) is the ongoing response of the solid Earth to ice and ocean load changes occurring since the Last Glacial Maximum (LGM; ~21 thousand years ago) and may be used to constrain the GrIS deglaciation history. We use data from the Greenland Global Positioning System network to directly measure GIA and estimate basin wide mass changes since the LGM. Unpredicted, large GIA uplift rates of +12 mm/year are found in southeast Greenland. These rates are due to low upper mantle viscosity in the region, from when Greenland passed over the Iceland hot spot about 40 million years ago. This region of concentrated soft rheology has a profound influence on reconstructing the deglaciation history of Greenland. We reevaluate the evolution of the GrIS since LGM and obtain a loss of 1.5-m sea-level equivalent from the northwest and southeast. These same sectors are dominating modern mass loss. We suggest that the present destabilization of these marine-based sectors may increase sea level for centuries to come. Our new deglaciation history and GIA uplift estimates suggest that studies that use the Gravity Recovery and Climate Experiment satellite mission to infer present-day changes in the GrIS may have erroneously corrected for GIA and underestimated the mass loss by about 20 gigatons/year. [less ▲]

Detailed reference viewed: 93 (1 UL)
Full Text
Peer Reviewed
See detailRecalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse.
Orlando, Ludovic; Ginolhac, Aurélien UL; Zhang, Guojie et al

in Nature (2013), 499(7456), 74-8

The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560 ... [more ▼]

The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr BP). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski's horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0-4.5 million years before present (Myr BP), twice the conventionally accepted time to the most recent common ancestor of the genus Equus. We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski's and domestic horse populations diverged 38-72 kyr BP, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski's horse investigated. This supports the contention that Przewalski's horses represent the last surviving wild horse population. We find similar levels of genetic variation among Przewalski's and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski's horse. Such regions could correspond to loci selected early during domestication. [less ▲]

Detailed reference viewed: 188 (29 UL)