References of "Kawamura, Akane"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailMolecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials.
Yeh, Tzu-Lan; Leissing, Thomas M.; Abboud, Martine I. et al

in Chemical science (2017), 8(11), 7651-7668

Inhibition of the human 2-oxoglutarate (2OG) dependent hypoxia inducible factor (HIF) prolyl hydroxylases (human PHD1-3) causes upregulation of HIF, thus promoting erythropoiesis and is therefore of ... [more ▼]

Inhibition of the human 2-oxoglutarate (2OG) dependent hypoxia inducible factor (HIF) prolyl hydroxylases (human PHD1-3) causes upregulation of HIF, thus promoting erythropoiesis and is therefore of therapeutic interest. We describe cellular, biophysical, and biochemical studies comparing four PHD inhibitors currently in clinical trials for anaemia treatment, that describe their mechanisms of action, potency against isolated enzymes and in cells, and selectivities versus representatives of other human 2OG oxygenase subfamilies. The 'clinical' PHD inhibitors are potent inhibitors of PHD catalyzed hydroxylation of the HIF-alpha oxygen dependent degradation domains (ODDs), and selective against most, but not all, representatives of other human 2OG dependent dioxygenase subfamilies. Crystallographic and NMR studies provide insights into the different active site binding modes of the inhibitors. Cell-based results reveal the inhibitors have similar effects on the upregulation of HIF target genes, but differ in the kinetics of their effects and in extent of inhibition of hydroxylation of the N- and C-terminal ODDs; the latter differences correlate with the biophysical observations. [less ▲]

Detailed reference viewed: 41 (1 UL)
Peer Reviewed
See detailTargeting histone lysine demethylases - progress, challenges, and the future.
Thinnes, Cyrille UL; England, Katherine S.; Kawamura, Akane et al

in Biochimica et biophysica acta (2014), 1839(12), 1416-32

N-Methylation of lysine and arginine residues has emerged as a major mechanism of transcriptional regulation in eukaryotes. In humans, N(epsilon)-methyllysine residue demethylation is catalysed by two ... [more ▼]

N-Methylation of lysine and arginine residues has emerged as a major mechanism of transcriptional regulation in eukaryotes. In humans, N(epsilon)-methyllysine residue demethylation is catalysed by two distinct subfamilies of demethylases (KDMs), the flavin-dependent KDM1 subfamily and the 2-oxoglutarate- (2OG) dependent JmjC subfamily, which both employ oxidative mechanisms. Modulation of histone methylation status is proposed to be important in epigenetic regulation and has substantial medicinal potential for the treatment of diseases including cancer and genetic disorders. This article provides an introduction to the enzymology of the KDMs and the therapeutic possibilities and challenges associated with targeting them, followed by a review of reported KDM inhibitors and their mechanisms of action from kinetic and structural perspectives. [less ▲]

Detailed reference viewed: 49 (0 UL)
Peer Reviewed
See detail5-Carboxy-8-hydroxyquinoline is a Broad Spectrum 2-Oxoglutarate Oxygenase Inhibitor which Causes Iron Translocation.
Hopkinson, Richard J.; Tumber, Anthony; Yapp, Clarence et al

in Chemical Science (2013), 4(8), 3110-3117

2-Oxoglutarate and iron dependent oxygenases are therapeutic targets for human diseases. Using a representative 2OG oxygenase panel, we compare the inhibitory activities of 5-carboxy-8-hydroxyquinoline ... [more ▼]

2-Oxoglutarate and iron dependent oxygenases are therapeutic targets for human diseases. Using a representative 2OG oxygenase panel, we compare the inhibitory activities of 5-carboxy-8-hydroxyquinoline (IOX1) and 4-carboxy-8-hydroxyquinoline (4C8HQ) with that of two other commonly used 2OG oxygenase inhibitors, N-oxalylglycine (NOG) and 2,4-pyridinedicarboxylic acid (2,4-PDCA). The results reveal that IOX1 has a broad spectrum of activity, as demonstrated by the inhibition of transcription factor hydroxylases, representatives of all 2OG dependent histone demethylase subfamilies, nucleic acid demethylases and gamma-butyrobetaine hydroxylase. Cellular assays show that, unlike NOG and 2,4-PDCA, IOX1 is active against both cytosolic and nuclear 2OG oxygenases without ester derivatisation. Unexpectedly, crystallographic studies on these oxygenases demonstrate that IOX1, but not 4C8HQ, can cause translocation of the active site metal, revealing a rare example of protein ligand-induced metal movement. [less ▲]

Detailed reference viewed: 77 (3 UL)