![]() Hemmer, Kathrin ![]() in Stem Cell Reports (2014) Detailed reference viewed: 435 (30 UL)![]() ; Schwamborn, Jens Christian ![]() in PLoS ONE (2012), 7(2), 30838 Cognitive decline during aging is correlated with a continuous loss of cells within the brain and especially within the hippocampus, which could be regenerated by adult neurogenesis. Here we show that ... [more ▼] Cognitive decline during aging is correlated with a continuous loss of cells within the brain and especially within the hippocampus, which could be regenerated by adult neurogenesis. Here we show that genetic ablation of NF-kappaB resulted in severe defects in the neurogenic region (dentate gyrus) of the hippocampus. Despite increased stem cell proliferation, axogenesis, synaptogenesis and neuroprotection were hampered, leading to disruption of the mossy fiber pathway and to atrophy of the dentate gyrus during aging. Here, NF-kappaB controls the transcription of FOXO1 and PKA, regulating axogenesis. Structural defects culminated in behavioral impairments in pattern separation. Re-activation of NF-kappaB resulted in integration of newborn neurons, finally to regeneration of the dentate gyrus, accompanied by a complete recovery of structural and behavioral defects. These data identify NF-kappaB as a crucial regulator of dentate gyrus tissue homeostasis suggesting NF-kappaB to be a therapeutic target for treating cognitive and mood disorders. [less ▲] Detailed reference viewed: 108 (1 UL)![]() Schwamborn, Jens Christian ![]() in BMC Genomics (2003), 4(1), 46 BACKGROUND: Tumor necrosis factor alpha (TNF) is able to induce a variety of biological responses in the nervous system including inflammation and neuroprotection. Human astrocytoma cells U373 have been ... [more ▼] BACKGROUND: Tumor necrosis factor alpha (TNF) is able to induce a variety of biological responses in the nervous system including inflammation and neuroprotection. Human astrocytoma cells U373 have been widely used as a model for inflammatory cytokine actions in the nervous system. Here we used cDNA microarrays to analyze the time course of the transcriptional response from 1 h up to 12 h post TNF treatment in comparison to untreated U373 cells. TNF activated strongly the NF-kappaB transcriptional pathway and is linked to other pathways via the NF-kappaB target genes JUNB and IRF-1. Part of the TNF-induced gene expression could be inhibited by pharmacological inhibition of NF-kappaB with pyrrolidine-dithiocarbamate (PDTC). NF-kappaB comprises a family of transcription factors which are involved in the inducible expression of genes regulating neuronal survival, inflammatory response, cancer and innate immunity. RESULTS: In this study we show that numerous genes responded to TNF (> 880 from 7500 tested) with a more than two-fold induction rate. Several novel TNF-responsive genes (about 60% of the genes regulated by a factor > or = 3) were detected. A comparison of our TNF-induced gene expression profiles of U373, with profiles from 3T3 and Hela cells revealed a striking cell-type specificity. SCYA2 (MCP-1, CCL2, MCAF) was induced in U373 cells in a sustained manner and at the highest level of all analyzed genes. MCP-1 protein expression, as monitored with immunofluorescence and ELISA, correlated exactly with microarray data. Based on these data and on evidence from literature we suggest a model for the potential neurodegenerative effect of NF-kappaB in astroglia: Activation of NF-kappaB via TNF results in a strongly increased production of MCP-1. This leads to a exacerbation of neurodegeneration in stoke or Multiple Sclerosis, presumably via infiltration of macrophages. CONCLUSIONS: The vast majority of genes regulated more than 3-fold were previously not linked to tumor necrosis factor alpha as a search in published literature revealed. Striking co-regulation for several functional groups such as proteasome and ribosomal proteins were detected. [less ▲] Detailed reference viewed: 167 (7 UL) |
||