References of "Kalantari, Ashkan"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailLatency Minimization for Content Delivery Networks with Wireless Edge Caching
Vu, Thang Xuan UL; Lei, Lei UL; Vuppala, Satyanarayana et al

in 2018 IEEE International Conference on Communications (ICC) (2018, May)

Detailed reference viewed: 85 (3 UL)
Full Text
Peer Reviewed
See detailSymbol-level and Multicast Precoding for Multiuser Multiantenna Downlink: A State-of-the-art, Classification and Challenges
Alodeh, Maha; Spano, Danilo UL; Kalantari, Ashkan et al

in IEEE Communications Surveys and Tutorials (2018)

Precoding has been conventionally considered as an effective means of mitigating or exploiting the interference in the multiantenna downlink channel, where multiple users are simultaneously served with ... [more ▼]

Precoding has been conventionally considered as an effective means of mitigating or exploiting the interference in the multiantenna downlink channel, where multiple users are simultaneously served with independent information over the same channel resources. The early works in this area were focused on transmitting an individual information stream to each user by constructing weighted linear combinations of symbol blocks (codewords). However, more recent works have moved beyond this traditional view by: i) transmitting distinct data streams to groups of users and ii) applying precoding on a symbol-per-symbol basis. In this context, the current survey presents a unified view and classification of precoding techniques with respect to two main axes: i) the switching rate of the precoding weights, leading to the classes of block-level and symbol-level precoding, ii) the number of users that each stream is addressed to, hence unicast, multicast, and broadcast precoding. Furthermore, the classified techniques are compared through representative numerical results to demonstrate their relative performance and uncover fundamental insights. Finally, a list of open theoretical problems and practical challenges are presented to inspire further research in this area. [less ▲]

Detailed reference viewed: 178 (21 UL)
Full Text
Peer Reviewed
See detailCache-Assisted Hybrid Satellite-Terrestrial Backhauling for 5G Cellular Networks
Kalantari, Ashkan; Fittipaldi, Marilena; Chatzinotas, Symeon UL et al

in Proceedings of IEEE Global Communications Conference (2017, December)

Fast growth of Internet content and availability of electronic devices such as smart phones and laptops has created an explosive content demand. As one of the 5G technology enablers, caching is a ... [more ▼]

Fast growth of Internet content and availability of electronic devices such as smart phones and laptops has created an explosive content demand. As one of the 5G technology enablers, caching is a promising technique to off-load the network backhaul and reduce the content delivery delay. Satellite communications provides immense area coverage and high data rate, hence, it can be used for large-scale content placement in the caches. In this work, we propose using hybrid mono/multi-beam satellite-terrestrial backhaul network for off-line edge caching of cellular base stations in order to reduce the traffic of terrestrial network. The off-line caching approach is comprised of content placement and content delivery phases. The content placement phase is performed based on local and global content popularities assuming that the content popularity follows Zipf-like distribution. In addition, we propose an approach to generate local content popularities based on a reference Zipf-like distribution to keep the correlation of content popularity. Simulation results show that the hybrid satellite-terrestrial architecture considerably reduces the content placement time while sustaining the cache hit ratio quite close to the upper-bound compared to the satellite-only method. [less ▲]

Detailed reference viewed: 183 (4 UL)