References of "Kaestner, Lars"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe Erythrocyte Sedimentation Rate and Its Relation to Cell Shape and Rigidity of Red Blood Cells from Chorea-Acanthocytosis Patients in an Off-Label Treatment with Dasatinib.
Rabe, Antonia; Kihm, Alexander; Darras, Alexis et al

in Biomolecules (2021), 11(5),

BACKGROUND: Chorea-acanthocytosis (ChAc) is a rare hereditary neurodegenerative disease with deformed red blood cells (RBCs), so-called acanthocytes, as a typical marker of the disease. Erythrocyte ... [more ▼]

BACKGROUND: Chorea-acanthocytosis (ChAc) is a rare hereditary neurodegenerative disease with deformed red blood cells (RBCs), so-called acanthocytes, as a typical marker of the disease. Erythrocyte sedimentation rate (ESR) was recently proposed as a diagnostic biomarker. To date, there is no treatment option for affected patients, but promising therapy candidates, such as dasatinib, a Lyn-kinase inhibitor, have been identified. METHODS: RBCs of two ChAc patients during and after dasatinib treatment were characterized by the ESR, clinical hematology parameters and the 3D shape classification in stasis based on an artificial neural network. Furthermore, mathematical modeling was performed to understand the contribution of cell morphology and cell rigidity to the ESR. Microfluidic measurements were used to compare the RBC rigidity between ChAc patients and healthy controls. RESULTS: The mechano-morphological characterization of RBCs from two ChAc patients in an off-label treatment with dasatinib revealed differences in the ESR and the acanthocyte count during and after the treatment period, which could not directly be related to each other. Clinical hematology parameters were in the normal range. Mathematical modeling indicated that RBC rigidity is more important for delayed ESR than cell shape. Microfluidic experiments confirmed a higher rigidity in the normocytes of ChAc patients compared to healthy controls. CONCLUSIONS: The results increase our understanding of the role of acanthocytes and their associated properties in the ESR, but the data are too sparse to answer the question of whether the ESR is a suitable biomarker for treatment success, whereas a correlation between hematological and neuronal phenotype is still subject to verification. [less ▲]

Detailed reference viewed: 41 (0 UL)
Full Text
Peer Reviewed
See detailRed blood cell phenotyping from 3D confocal images using artificial neural networks.
Simionato, Greta; Hinkelmann, Konrad; Chachanidze, Revaz et al

in PLoS computational biology (2021), 17(5), 1008934

The investigation of cell shapes mostly relies on the manual classification of 2D images, causing a subjective and time consuming evaluation based on a portion of the cell surface. We present a dual-stage ... [more ▼]

The investigation of cell shapes mostly relies on the manual classification of 2D images, causing a subjective and time consuming evaluation based on a portion of the cell surface. We present a dual-stage neural network architecture for analyzing fine shape details from confocal microscopy recordings in 3D. The system, tested on red blood cells, uses training data from both healthy donors and patients with a congenital blood disease, namely hereditary spherocytosis. Characteristic shape features are revealed from the spherical harmonics spectrum of each cell and are automatically processed to create a reproducible and unbiased shape recognition and classification. The results show the relation between the particular genetic mutation causing the disease and the shape profile. With the obtained 3D phenotypes, we suggest our method for diagnostics and theragnostics of blood diseases. Besides the application employed in this study, our algorithms can be easily adapted for the 3D shape phenotyping of other cell types and extend their use to other applications, such as industrial automated 3D quality control. [less ▲]

Detailed reference viewed: 38 (0 UL)
Full Text
Peer Reviewed
See detailRare Anemias: Are Their Names Just Smoke and Mirrors?
Simionato, Greta; van Wijk, Richard; Quint, Stephan et al

in Frontiers in physiology (2021), 12

Detailed reference viewed: 23 (0 UL)
Full Text
Peer Reviewed
See detailLingering Dynamics in Microvascular Blood Flow.
Kihm, Alexander; Quint, Stephan; Laschke, Matthias W. et al

in Biophysical journal (2021), 120(3), 432-439

The microvascular networks in the body of vertebrates consist of the smallest vessels such as arterioles, capillaries, and venules. The flow of red blood cells (RBCs) through these networks ensures the ... [more ▼]

The microvascular networks in the body of vertebrates consist of the smallest vessels such as arterioles, capillaries, and venules. The flow of red blood cells (RBCs) through these networks ensures the gas exchange in as well as the transport of nutrients to the tissues. Any alterations in this blood flow may have severe implications on the health state. Because the vessels in these networks obey dimensions similar to the diameter of RBCs, dynamic effects on the cellular scale play a key role. The steady progression in the numerical modeling of RBCs, even in complex networks, has led to novel findings in the field of hemodynamics, especially concerning the impact and the dynamics of lingering events when a cell meets a branch of the network. However, these results are yet to be matched by a detailed analysis of the lingering experiments in vivo. To quantify this lingering effect in in vivo experiments, this study analyzes branching vessels in the microvasculature of Syrian golden hamsters via intravital microscopy and the use of an implanted dorsal skinfold chamber. It also presents a detailed analysis of these lingering effects of cells at the apex of bifurcating vessels, affecting the temporal distribution of plasmatic zones of blood flow in the branches and even causing a partial blockage in severe cases. [less ▲]

Detailed reference viewed: 25 (0 UL)
Full Text
Peer Reviewed
See detailAcanthocyte Sedimentation Rate as a Diagnostic Biomarker for Neuroacanthocytosis Syndromes: Experimental Evidence and Physical Justification.
Darras, Alexis; Peikert, Kevin; Rabe, Antonia et al

in Cells (2021), 10(4),

(1) Background: Chorea-acanthocytosis and McLeod syndrome are the core diseases among the group of rare neurodegenerative disorders called neuroacanthocytosis syndromes (NASs). NAS patients have a ... [more ▼]

(1) Background: Chorea-acanthocytosis and McLeod syndrome are the core diseases among the group of rare neurodegenerative disorders called neuroacanthocytosis syndromes (NASs). NAS patients have a variable number of irregularly spiky erythrocytes, so-called acanthocytes. Their detection is a crucial but error-prone parameter in the diagnosis of NASs, often leading to misdiagnoses. (2) Methods: We measured the standard Westergren erythrocyte sedimentation rate (ESR) of various blood samples from NAS patients and healthy controls. Furthermore, we manipulated the ESR by swapping the erythrocytes and plasma of different individuals, as well as replacing plasma with dextran. These measurements were complemented by clinical laboratory data and single-cell adhesion force measurements. Additionally, we followed theoretical modeling approaches. (3) Results: We show that the acanthocyte sedimentation rate (ASR) with a two-hour read-out is significantly prolonged in chorea-acanthocytosis and McLeod syndrome without overlap compared to the ESR of the controls. Mechanistically, through modern colloidal physics, we show that acanthocyte aggregation and plasma fibrinogen levels slow down the sedimentation. Moreover, the inverse of ASR correlates with the number of acanthocytes (R2=0.61, p=0.004). (4) Conclusions: The ASR/ESR is a clear, robust and easily obtainable diagnostic marker. Independently of NASs, we also regard this study as a hallmark of the physical view of erythrocyte sedimentation by describing anticoagulated blood in stasis as a percolating gel, allowing the application of colloidal physics theory. [less ▲]

Detailed reference viewed: 31 (0 UL)
Full Text
Peer Reviewed
See detailA deep learning-based concept for high throughput image flow cytometry
Martin-Wortham, Julie; Recktenwald, Steffen M.; Lopes, Marcelle G. M. et al

in APPLIED PHYSICS LETTERS (2021), 118(12),

We propose a flow cytometry concept that combines a spatial optical modulation scheme and deep learning for lensless cell imaging. Inspired by auto-encoder techniques, an artificial neural network mimics ... [more ▼]

We propose a flow cytometry concept that combines a spatial optical modulation scheme and deep learning for lensless cell imaging. Inspired by auto-encoder techniques, an artificial neural network mimics the optical transfer function of a particular microscope and camera for certain types of cells once trained and reconstructs microscope images from simple waveforms that are generated by cells in microfluidic flow. This eventually enables the label-free detection of cells at high throughput while simultaneously providing their corresponding brightfield images. The present work focuses on the computational proof of concept of this method by mimicking the waveforms. Our suggested approach would require a minimum set of optical components such as a collimated light source, a slit mask, and a light sensor and could be easily integrated into a ruggedized lab-on-chip device. The method is benchmarked with a well-investigated dataset of red blood cell images. [less ▲]

Detailed reference viewed: 25 (0 UL)
Full Text
Peer Reviewed
See detailEffect of Red Blood Cell Aging In Vivo on Their Aggregation Properties In Vitro: Measurements with Laser Tweezers
Ermolinskiy, Petr; Lugovtsov, Andrei; Yaya, Francois et al

in Applied Sciences (2020), 10(21), 7581-10

Red blood cell (RBC) aggregation highly influences hemorheology and blood microcirculation in the human body. The aggregation properties of RBCs can vary due to numerous factors, including RBC age. The ... [more ▼]

Red blood cell (RBC) aggregation highly influences hemorheology and blood microcirculation in the human body. The aggregation properties of RBCs can vary due to numerous factors, including RBC age. The aim of this work was to estimate in vitro the differences in the RBC aggregation properties of different RBC age populations in single-cell experiments using laser tweezers. RBCs from five healthy volunteers were separated into four subpopulations by Percoll density gradient centrifugation. Each subpopulation of the RBC was separately resuspended in autologous plasma or dextran 70 kDa (50 mg/mL). The aggregation force between the single cells was measured with holographic laser tweezers. The obtained data demonstrated an enhancement of RBC aggregation force in doublets with age: the older the cells, the higher the aggregation force. The obtained data revealed the differences between the aggregation and aggregability of RBC in dependence of the RBC in vivo age. [less ▲]

Detailed reference viewed: 62 (2 UL)
Full Text
Peer Reviewed
See detailCross-sectional focusing of red blood cells in a constricted microfluidic channel
Abay, Asena; Recktenwald, Steffen M.; John, Thomas et al

in SOFT MATTER (2020), 16(2), 534-543

Constrictions in blood vessels and microfluidic devices can dramatically change the spatial distribution of passing cells or particles and are commonly used in biomedical cell sorting applications ... [more ▼]

Constrictions in blood vessels and microfluidic devices can dramatically change the spatial distribution of passing cells or particles and are commonly used in biomedical cell sorting applications. However, the three-dimensional nature of cell focusing in the channel cross-section remains poorly investigated. Here, we explore the cross-sectional distribution of living and rigid red blood cells passing a constricted microfluidic channel by tracking individual cells in multiple layers across the channel depth and across the channel width. While cells are homogeneously distributed in the channel cross-section pre-contraction, we observe a strong geometry-induced focusing towards the four channel faces post-contraction. The magnitude of this cross-sectional focusing effect increases with increasing Reynolds number for both living and rigid red blood cells. We discuss how this non-uniform cell distribution downstream of the contraction results in an apparent double-peaked velocity profile in particle image velocimetry analysis and show that trapping of red blood cells in the recirculation zones of the abrupt construction depends on cell deformability. [less ▲]

Detailed reference viewed: 45 (0 UL)
Full Text
Peer Reviewed
See detailThe Evolution of Erythrocytes Becoming Red in Respect to Fluorescence
Hertz, Laura; Ruppenthal, Sandra; Simionato, Greta et al

in FRONTIERS IN PHYSIOLOGY (2019), 10

Very young red blood cells, namely reticulocytes, can be quite easily recognized and labeled by cluster of differentiation antibodies (CD71 transferrin receptor) or by staining remnant RNA with thiazol ... [more ▼]

Very young red blood cells, namely reticulocytes, can be quite easily recognized and labeled by cluster of differentiation antibodies (CD71 transferrin receptor) or by staining remnant RNA with thiazol orange. In contrast, age specific erythrocyte labeling is more difficult in later periods of their life time. While erythrocytes contain band 4.1 protein a molecular clock, so far it has not been possible to read this clock on individual cells. One concept to track erythrocytes during their life time is to mark them when they are young, either directly in vivo or ex vivo followed by a transfusion. Several methods like biotinylation, use of isotopes or fluorescent labeling have proved to be useful experimental approaches but also have several inherent disadvantages. Genetic engineering of mice provides additional options to express fluorescent proteins in erythrocytes. To allow co-staining with popular green fluorescent dyes like Fluo-4 or other fluorescein-based dyes, we bred a mouse line expressing a tandem red fluorescent protein (tdRFP). Within this Brief Research Report, we provide the initial characterisation of this mouse line and show application examples ranging from transfusion experiments and intravital microscopy to multicolour flow cytometry and confocal imaging. We provide a versatile new tool for erythrocyte research and discuss a range of experimental opportunities to study membrane processes and other aspects of erythrocyte development and aging with help of these animals. [less ▲]

Detailed reference viewed: 54 (0 UL)
Full Text
Peer Reviewed
See detailGlutaraldehyde - A Subtle Tool in the Investigation of Healthy and Pathologic Red Blood Cells
Abay, Asena; Simionato, Greta; Chachanidze, Revaz et al

in FRONTIERS IN PHYSIOLOGY (2019), 10

Glutaraldehyde is a well-known substance used in biomedical research to fix cells. Since hemolytic anemias are often associated with red blood cell shape changes deviating from the biconcave disk shape ... [more ▼]

Glutaraldehyde is a well-known substance used in biomedical research to fix cells. Since hemolytic anemias are often associated with red blood cell shape changes deviating from the biconcave disk shape, conservation of these shapes for imaging in general and 3D-imaging in particular like confocal microscopy, scanning electron microscopy or scanning probe microscopy is a common desire. Along with the fixation comes an increase in the stiffness of the cells. In the context of red blood cells this increased rigidity is often used to mimic malaria infected red blood cells because they are also stiffer than healthy red blood cells. However, the use of glutaraldehyde is associated with numerous pitfalls: (i) while the increase in rigidity by an application of increasing concentrations of glutaraldehyde is an analog process, the fixation is a rather digital event (all or none); (ii) addition of glutaraldehyde massively changes osmolality in a concentration dependent manner and hence cell shapes can be distorted; (iii) glutaraldehyde batches differ in their properties especially in the ratio of monomers and polymers (iv) handling pitfalls, like inducing shear artifacts of red blood cell shapes or cell density changes that needs to be considered, e.g., when working with cells in flow; (v) staining glutaraldehyde treated red blood cells need different approaches compared to living cells, for instance, because glutaraldehyde itself induces a strong fluorescence. Within this paper we provide documentation about the subtle use of glutaraldehyde on healthy and pathologic red blood cells and how to deal with or circumvent pitfalls. [less ▲]

Detailed reference viewed: 74 (0 UL)
Full Text
Peer Reviewed
See detailThe buckling instability of aggregating red blood cells
Flomann, Daniel; Othmane, Aouane; Kaestner, Lars et al

in Scientific Reports (2017)

Detailed reference viewed: 99 (0 UL)