References of "Kabore, Abdoul Kader 50032251"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailWhat You See is What it Means! Semantic Representation Learning of Code based on Visualization
Keller, Patrick UL; Kabore, Abdoul Kader UL; Plein, Laura et al

in ACM Transactions on Software Engineering and Methodology (2021)

Recent successes in training word embeddings for NLP tasks have encouraged a wave of research on representation learning for sourcecode, which builds on similar NLP methods. The overall objective is then ... [more ▼]

Recent successes in training word embeddings for NLP tasks have encouraged a wave of research on representation learning for sourcecode, which builds on similar NLP methods. The overall objective is then to produce code embeddings that capture the maximumof program semantics. State-of-the-art approaches invariably rely on a syntactic representation (i.e., raw lexical tokens, abstractsyntax trees, or intermediate representation tokens) to generate embeddings, which are criticized in the literature as non-robustor non-generalizable. In this work, we investigate a novel embedding approach based on the intuition that source code has visualpatterns of semantics. We further use these patterns to address the outstanding challenge of identifying semantic code clones. Wepropose theWySiWiM(“What You See Is What It Means”) approach where visual representations of source code are fed into powerfulpre-trained image classification neural networks from the field of computer vision to benefit from the practical advantages of transferlearning. We evaluate the proposed embedding approach on the task of vulnerable code prediction in source code and on two variationsof the task of semantic code clone identification: code clone detection (a binary classification problem), and code classification (amulti-classification problem). We show with experiments on the BigCloneBench (Java), Open Judge (C) that although simple, ourWySiWiMapproach performs as effectively as state of the art approaches such as ASTNN or TBCNN. We also showed with datafrom NVD and SARD thatWySiWiMrepresentation can be used to learn a vulnerable code detector with reasonable performance(accuracy∼90%). We further explore the influence of different steps in our approach, such as the choice of visual representations or theclassification algorithm, to eventually discuss the promises and limitations of this research direction. [less ▲]

Detailed reference viewed: 86 (6 UL)
Full Text
Peer Reviewed
See detailDexRay: A Simple, yet Effective Deep Learning Approach to Android Malware Detection Based on Image Representation of Bytecode
Daoudi, Nadia UL; Samhi, Jordan UL; Kabore, Abdoul Kader UL et al

in Communications in Computer and Information Science (2021)

Computer vision has witnessed several advances in recent years, with unprecedented performance provided by deep representation learning research. Image formats thus appear attractive to other fields such ... [more ▼]

Computer vision has witnessed several advances in recent years, with unprecedented performance provided by deep representation learning research. Image formats thus appear attractive to other fields such as malware detection, where deep learning on images alleviates the need for comprehensively hand-crafted features generalising to different malware variants. We postulate that this research direction could become the next frontier in Android malware detection, and therefore requires a clear roadmap to ensure that new approaches indeed bring novel contributions. We contribute with a first building block by developing and assessing a baseline pipeline for image-based malware detection with straightforward steps. We propose DexRay, which converts the bytecode of the app DEX files into grey-scale “vector” images and feeds them to a 1-dimensional Convolutional Neural Network model. We view DexRay as foundational due to the exceedingly basic nature of the design choices, allowing to infer what could be a minimal performance that can be obtained with image-based learning in malware detection. The performance of DexRay evaluated on over 158k apps demonstrates that, while simple, our approach is effective with a high detection rate(F1-score= 0.96). Finally, we investigate the impact of time decay and image-resizing on the performance of DexRay and assess its resilience to obfuscation. This work-in-progress paper contributes to the domain of Deep Learning based Malware detection by providing a sound, simple, yet effective approach (with available artefacts) that can be the basis to scope the many profound questions that will need to be investigated to fully develop this domain. [less ▲]

Detailed reference viewed: 109 (19 UL)
Full Text
Peer Reviewed
See detailEvaluating Representation Learning of Code Changes for Predicting Patch Correctness in Program Repair
Tian, Haoye UL; Liu, Kui UL; Kabore, Abdoul Kader UL et al

in Tian, Haoye (Ed.) 35th IEEE/ACM International Conference on Automated Software Engineering, September 21-25, 2020, Melbourne, Australia (2020)

A large body of the literature of automated program repair develops approaches where patches are generated to be validated against an oracle (e.g., a test suite). Because such an oracle can be imperfect ... [more ▼]

A large body of the literature of automated program repair develops approaches where patches are generated to be validated against an oracle (e.g., a test suite). Because such an oracle can be imperfect, the generated patches, although validated by the oracle, may actually be incorrect. While the state of the art explore research directions that require dynamic information or rely on manually-crafted heuristics, we study the benefit of learning code representations to learn deep features that may encode the properties of patch correctness. Our work mainly investigates different representation learning approaches for code changes to derive embeddings that are amenable to similarity computations. We report on findings based on embeddings produced by pre-trained and re-trained neural networks. Experimental results demonstrate the potential of embeddings to empower learning algorithms in reasoning about patch correctness: a machine learning predictor with BERT transformer-based embeddings... [less ▲]

Detailed reference viewed: 91 (27 UL)