References of "Huin-Schohn, Cécile 40000325"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailGravity changes during animal development affect IgM heavy-chain transcription and probably lymphopoiesis
Huin-Schohn, Cécile UL; Gueguinou, Nathan UL; Schenten, Véronique UL et al

in FASEB Journal (2013), 27(1), 333-341

Our previous research demonstrated that spaceflight conditions affect antibody production in response to an antigenic stimulation in adult amphibians. Here, we investigated whether antibody synthesis is ... [more ▼]

Our previous research demonstrated that spaceflight conditions affect antibody production in response to an antigenic stimulation in adult amphibians. Here, we investigated whether antibody synthesis is affected when animal development occurs onboard a space station. To answer this question, embryos of the Iberian ribbed newt, Pleurodeles waltl, were sent to the International Space Station (ISS) before the initiation of immunoglobulin heavy-chain expression. Thus, antibody synthesis began in space. On landing, we determined the effects of spaceflight on P. waltl development and IgM heavy-chain transcription. Results were compared with those obtained using embryos that developed on Earth. We find that IgM heavy-chain transcription is doubled at landing and that spaceflight does not affect P. waltl development and does not induce inflammation. We also recreated the environmental modifications encountered by the embryos during their development onboard the ISS. This strategy allowed us to demonstrate that gravity change is the factor responsible for antibody heavy-chain transcription modifications that are associated with NF-κB mRNA level variations. Taken together, and given that the larvae were not immunized, these data suggest a modification of lymphopoiesis when gravity changes occur during ontogeny.-Huin-Schohn, C., Guéguinou, N., Schenten, V., Bascove, M., Koch, G. G., Baatout, S., Tschirhart, E., Frippiat, J.-P. Gravity changes during animal development affect IgM heavy-chain transcription and probably lymphopoiesis. [less ▲]

Detailed reference viewed: 133 (6 UL)
Full Text
Peer Reviewed
See detailSpaceflight-associated changes in immunoglobulin VH gene expression in the amphibian Pleurodeles waltl
Bascove, Matthieu; Huin-Schohn, Cécile UL; Gueguinou, Nathan UL et al

in FASEB Journal (2009), 23(5), 1607-1615

Understanding why the immune system is depressed during spaceflight is of obvious importance for future human deep-space missions, such as the foreseen missions to Mars. However, little is known about the ... [more ▼]

Understanding why the immune system is depressed during spaceflight is of obvious importance for future human deep-space missions, such as the foreseen missions to Mars. However, little is known about the effects of these flights on humoral immunity. We previously immunized adult Pleurodeles waltl (urodele amphibian) onboard the Mir space station and showed that heavy-chain variable (VH) domains of specific IgM antibodies are encoded by genes belonging to the VHII and VHVI families. We have now determined how these animals use their individual VHII and VHVI genes by screening IgM heavy-chain cDNA libraries and by quantifying IgM heavy-chain transcripts encoded by these genes. Results were compared with those obtained using control animals immunized on Earth under the same conditions as onboard Mir. Our experiments revealed an increase in the expression of IgM heavy-chain mRNAs encoded by the VHII and VHVI.C genes and a strong decrease in the expression of IgM heavy-chain mRNAs encoded by the VHVI.A and VHVI.B genes in spaceflight animals. Consequently, different heavy-chain mRNAs are expressed by spaceflight animals, demonstrating that this environment affects the humoral response. These observations may be due to a change in B-cell selection under spaceflight conditions. [less ▲]

Detailed reference viewed: 101 (4 UL)
Full Text
Peer Reviewed
See detailCould spaceflight-associated immune system weakening preclude the expansion of human presence beyond Earth’s orbit?
Gueguinou, Nathan UL; Huin-Schohn, Cécile UL; Bascove, Matthieu et al

in Journal of Leukocyte Biology (2009), 86(5), 1027-1038

This year, we celebrate the 40th birthday of the first landing of humans on the moon. By 2020, astronauts should return to the lunar surface and establish an outpost there that will provide a technical ... [more ▼]

This year, we celebrate the 40th birthday of the first landing of humans on the moon. By 2020, astronauts should return to the lunar surface and establish an outpost there that will provide a technical basis for future manned missions to Mars. This paper summarizes major constraints associated with a trip to Mars, presents immunological hazards associated with this type of mission, and shows that our current understanding of the immunosuppressive effects of spaceflight is limited. Weakening of the immune system associated with spaceflight is therefore an area that should be considered more thoroughly before we undertake prolonged space voyages. [less ▲]

Detailed reference viewed: 127 (16 UL)