References of "Hilscherová, Klára"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let’s cooperate!
Dulio, Valeria; Koschorreck, Jan; van Bavel, Bert et al

in Environmental Sciences Europe (2020), 32(1), 1--11

The Partnership for Chemicals Risk Assessment (PARC) is currently under development as a joint research and innovation programme to strengthen the scientific basis for chemical risk assessment in the EU ... [more ▼]

The Partnership for Chemicals Risk Assessment (PARC) is currently under development as a joint research and innovation programme to strengthen the scientific basis for chemical risk assessment in the EU. The plan is to bring chemical risk assessors and managers together with scientists to accelerate method development and the production of necessary data and knowledge, and to facilitate the transition to next-generation evidence-based risk assessment, a non-toxic environment and the European Green Deal. The NORMAN Network is an independent, well-established and competent network of more than 80 organisations in the field of emerging substances and has enormous potential to contribute to the implementation of the PARC partnership. NORMAN stands ready to provide expert advice to PARC, drawing on its long experience in the development, harmonisation and testing of advanced tools in relation to chemicals of emerging concern and in support of a European Early Warning System to unravel the risks of contaminants of emerging concern (CECs) and close the gap between research and innovation and regulatory processes. In this commentary we highlight the tools developed by NORMAN that we consider most relevant to supporting the PARC initiative: (i) joint data space and cutting-edge research tools for risk assessment of contaminants of emerging concern; (ii) collaborative European framework to improve data quality and comparability; (iii) advanced data analysis tools for a European early warning system and (iv) support to national and European chemical risk assessment thanks to harnessing, combining and sharing evidence and expertise on CECs. By combining the extensive knowledge and experience of the NORMAN network with the financial and policy-related strengths of the PARC initiative, a large step towards the goal of a non-toxic environment can be taken. [less ▲]

Detailed reference viewed: 52 (2 UL)
Full Text
Peer Reviewed
See detailLet us empower the WFD to prevent risks of chemical pollution in European rivers and lakes
Brack, Werner; Ait-Aissa, Selim; Altenburger, Rolf et al

in Environmental Sciences Europe (2019), 31(1), 1-3

Detailed reference viewed: 28 (1 UL)
Full Text
Peer Reviewed
See detailFuture water quality monitoring: improving the balance between exposure and toxicity assessments of real-world pollutant mixtures
Altenburger, Rolf; Brack, Werner; Burgess, Robert M. et al

in Environmental Sciences Europe (2019), 31(1), 12

Environmental water quality monitoring aims to provide the data required for safeguarding the environment against adverse biological effects from multiple chemical contamination arising from anthropogenic ... [more ▼]

Environmental water quality monitoring aims to provide the data required for safeguarding the environment against adverse biological effects from multiple chemical contamination arising from anthropogenic diffuse emissions and point sources. Here, we integrate the experience of the international EU-funded project SOLUTIONS to shift the focus of water monitoring from a few legacy chemicals to complex chemical mixtures, and to identify relevant drivers of toxic effects. Monitoring serves a range of purposes, from control of chemical and ecological status compliance to safeguarding specific water uses, such as drinking water abstraction. Various water sampling techniques, chemical target, suspect and non-target analyses as well as an array of in vitro, in vivo and in situ bioanalytical methods were advanced to improve monitoring of water contamination. Major improvements for broader applicability include tailored sampling techniques, screening and identification techniques for a broader and more diverse set of chemicals, higher detection sensitivity, standardized protocols for chemical, toxicological, and ecological assessments combined with systematic evidence evaluation techniques. No single method or combination of methods is able to meet all divergent monitoring purposes. Current monitoring approaches tend to emphasize either targeted exposure or effect detection. Here, we argue that, irrespective of the specific purpose, assessment of monitoring results would benefit substantially from obtaining and linking information on the occurrence of both chemicals and potentially adverse biological effects. In this paper, we specify the information required to: (1) identify relevant contaminants, (2) assess the impact of contamination in aquatic ecosystems, or (3) quantify cause--effect relationships between contaminants and adverse effects. Specific strategies to link chemical and bioanalytical information are outlined for each of these distinct goals. These strategies have been developed and explored using case studies in the Danube and Rhine river basins as well as for rivers of the Iberian Peninsula. Current water quality assessment suffers from biases resulting from differences in approaches and associated uncertainty analyses. While exposure approaches tend to ignore data gaps (i.e., missing contaminants), effect-based approaches penalize data gaps with increased uncertainty factors. This integrated work suggests systematic ways to deal with mixture exposures and combined effects in a more balanced way, and thus provides guidance for future tailored environmental monitoring. [less ▲]

Detailed reference viewed: 130 (6 UL)