References of "Hendrickx, Diana M"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailA new synuclein-transgenic mouse model for early Parkinson's reveals molecular features of preclinical disease
Hendrickx, Diana M.; Garcia, Pierre; Ashrafi, Amer et al

in Molecular Neurobiology (in press)

Understanding Parkinson’s disease (PD) in particular in its earliest phases, is important for diagnosis and treatment. However, human brain samples are collected post- mortem, reflecting mainly end stage ... [more ▼]

Understanding Parkinson’s disease (PD) in particular in its earliest phases, is important for diagnosis and treatment. However, human brain samples are collected post- mortem, reflecting mainly end stage disease. Because brain samples of mouse models can be collected at any stage of the disease process, they are useful to investigate PD progression. Here, we compare ventral midbrain transcriptomics profiles from α- synuclein transgenic mice with a progressive, early PD-like striatal neurodegeneration across different ages using pathway, gene set and network analysis methods. Our study uncovers statistically significant altered genes across ages and between genotypes with known, suspected, or unknown function in PD pathogenesis and key pathways associated with disease progression. Among those are genotype-dependent alterations associated with synaptic plasticity, neurotransmission, as well as mitochondria-related genes and dysregulation of lipid metabolism. Age-dependent changes were among others observed in neuronal and synaptic activity, calcium homeostasis, and membrane receptor signaling pathways, many of which linked to G- protein coupled receptors. Most importantly, most changes occurred before neurodegeneration was detected in this model, which points to a sequence of gene expression events that may be relevant for disease initiation and progression. It is tempting to speculate that molecular changes similar to those changes observed in our model happen in midbrain dopaminergic neurons before they start to degenerate. In other words, we believe we have uncovered molecular changes that accompany the progression from preclinical to early PD. [less ▲]

Detailed reference viewed: 119 (0 UL)
Full Text
Peer Reviewed
See detailComparative transcriptome analysis of Parkinson’s disease and Hutchinson-Gilford progeria syndrome reveals shared susceptible cellular network processes
Hendrickx, Diana M.; Glaab, Enrico UL

in BMC Medical Genomics (2020), 13(114),

Background Parkinson’s Disease (PD) and Hutchinson-Gilford Progeria Syndrome (HGPS) are two heterogeneous disorders, which both display molecular and clinical alterations associated with the aging process ... [more ▼]

Background Parkinson’s Disease (PD) and Hutchinson-Gilford Progeria Syndrome (HGPS) are two heterogeneous disorders, which both display molecular and clinical alterations associated with the aging process. However, similarities and differences between molecular changes in these two disorders have not yet been investigated systematically at the level of individual biomolecules and shared molecular network alterations. Methods Here, we perform a comparative meta-analysis and network analysis of human transcriptomics data from case-control studies for both diseases to investigate common susceptibility genes and sub-networks in PD and HGPS. Alzheimer’s disease (AD) and primary melanoma (PM) were included as controls to confirm that the identified overlapping susceptibility genes for PD and HGPS are non-generic. Results We find statistically significant, overlapping genes and cellular processes with significant alterations in both diseases. Interestingly, the majority of these shared affected genes display changes with opposite directionality, indicating that shared susceptible cellular processes undergo different mechanistic changes in PD and HGPS. A complementary regulatory network analysis also reveals that the altered genes in PD and HGPS both contain targets controlled by the upstream regulator CDC5L. Conclusions Overall, our analyses reveal a significant overlap of affected cellular processes and molecular sub-networks in PD and HGPS, including changes in aging-related processes that may reflect key susceptibility factors associated with age-related risk for PD. [less ▲]

Detailed reference viewed: 107 (0 UL)