![]() Ternes, Dominik ![]() ![]() ![]() in Nature Metabolism (2022) The gut microbiome is a key player in the immunomodulatory and protumorigenic microenvironment during colorectal cancer (CRC), as different gut-derived bacteria can induce tumour growth. However, the ... [more ▼] The gut microbiome is a key player in the immunomodulatory and protumorigenic microenvironment during colorectal cancer (CRC), as different gut-derived bacteria can induce tumour growth. However, the crosstalk between the gut microbiome and the host in relation to tumour cell metabolism remains largely unexplored. Here we show that formate, a metabolite produced by the CRC-associated bacterium Fusobacterium nucleatum, promotes CRC development. We describe molecular signatures linking CRC phenotypes with Fusobacterium abundance. Cocultures of F. nucleatum with patient-derived CRC cells display protumorigenic effects, along with a metabolic shift towards increased formate secretion and cancer glutamine metabolism. We further show that microbiome-derived formate drives CRC tumour invasion by triggering AhR signalling, while increasing cancer stemness. Finally, F. nucleatum or formate treatment in mice leads to increased tumour incidence or size, and Th17 cell expansion, which can favour proinflammatory profiles. Moving beyond observational studies, we identify formate as a gut-derived oncometabolite that is relevant for CRC progression. [less ▲] Detailed reference viewed: 200 (14 UL)![]() ; ; et al in Cell Reports (2019), 29(7), 1767-1777 Parkinson’s disease (PD) exhibits systemic effects on human metabolism with emerging roles for the gut microbiome. Here, we integrated longitudinal metabolome data from 30 drug-naïve, de-novo PD patients ... [more ▼] Parkinson’s disease (PD) exhibits systemic effects on human metabolism with emerging roles for the gut microbiome. Here, we integrated longitudinal metabolome data from 30 drug-naïve, de-novo PD patients and 30 matched controls with constraint-based modeling of gut microbial communities derived from an independent, drug-naïve PD cohort, and prospective data from a general population. Our key results are i) longitudinal trajectory of metabolites associated with the interconversion of methionine and cysteine via cystathionine differed between PD patients and controls, ii) dopaminergic medication showed strong lipidomic signatures, iii) taurine-conjugated bile acids correlated with the severity of motor symptoms, while low levels of sulfated taurolithocholate were associated with incident PD in the general population, and iv) computational modeling predicted changes in sulfur metabolism, driven by A. muciniphila and B. wadsworthia, consistent with the changed metabolome. In conclusion, the multi-omics integration revealed PD-specific patterns in microbial-host sulfur co-metabolism that may contribute to PD severity. [less ▲] Detailed reference viewed: 174 (17 UL) |
||