Browse ORBi

- What it is and what it isn't
- Green Road / Gold Road?
- Ready to Publish. Now What?
- How can I support the OA movement?
- Where can I learn more?

ORBi

An Approximate Solution for Symbol-Level Multiuser Precoding Using Support Recovery Haqiqatnejad, Alireza ; Kayhan, Farbod ; Ottersten, Björn in IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Cannes 2-5 July 2019 (2019, August 29) In this paper, we propose a low-complexity method to approximately solve the SINR-constrained optimization problem of symbol-level precoding (SLP). First, assuming a generic modulation scheme, the ... [more ▼] In this paper, we propose a low-complexity method to approximately solve the SINR-constrained optimization problem of symbol-level precoding (SLP). First, assuming a generic modulation scheme, the precoding optimization problem is recast as a standard non-negative least squares (NNLS). Then, we improve an existing closed-form SLP (CF-SLP) scheme using the conditions for nearly perfect recovery of the optimal solution support, followed by solving a reduced system of linear equations. We show through simulation results that in comparison with the CF-SLP method, the improved approximate solution of this paper, referred to as ICF-SLP, significantly enhances the performance with a negligible increase in complexity. We also provide comparisons with a fast-converging iterative NNLS algorithm, where it is shown that the ICF-SLP method is comparable in performance to the iterative algorithm with a limited maximum number of iterations. Analytic discussions on the complexities of different methods are provided, verifying the computational efficiency of the proposed method. Our results further indicate that the ICF-SLP scheme performs quite close to the optimal SLP, particularly in the large system regime. [less ▲] Detailed reference viewed: 55 (9 UL)Robust Design of Power Minimizing Symbol-Level Precoder under Channel Uncertainty Haqiqatnejad, Alireza ; Kayhan, Farbod ; Ottersten, Björn in IEEE Global Communications Conference (GLOBECOM), Abu Dhabi 9-13 December 2018 (2019, February 21) In this paper, we investigate the downlink transmission of a multiuser multiple-input single-output (MISO) channel under a symbol-level precoding (SLP) scheme, having imperfect channel knowledge at the ... [more ▼] In this paper, we investigate the downlink transmission of a multiuser multiple-input single-output (MISO) channel under a symbol-level precoding (SLP) scheme, having imperfect channel knowledge at the transmitter. In defining the SLP design problem, a general category of constructive interference regions (CIR) called distance preserving CIR (DPCIR) is adopted. In particular, we are interested in a robust SLP design minimizing the total transmit power subject to individual quality-of-service (QoS) requirements. We consider two common models for the channel uncertainty region, namely, spherical (norm-bounded) and stochastic. For the spherical uncertainty model, a worst-case robust precoder is proposed, while for the stochastically known uncertainties, we derive a convex optimization problem with probabilistic constraints. We simulate the performance of the proposed robust approaches, and compare them with the existing methods. Through the simulation results, we also show that there is an essential trade-off between the two robust approaches. [less ▲] Detailed reference viewed: 121 (16 UL)PowerMinimizer Symbol-Level Precoding: A Closed-Form Sub-Optimal Solution Haqiqatnejad, Alireza ; Kayhan, Farbod ; Ottersten, Björn in IEEE Signal Processing Letters (2018), 25(11), 1730-1734 In this letter, we study the optimal solution of multiuser symbol-level precoding (SLP) for minimization of the total transmit power under given signal-to-interference-plus noise ratio (SINR) constraints ... [more ▼] In this letter, we study the optimal solution of multiuser symbol-level precoding (SLP) for minimization of the total transmit power under given signal-to-interference-plus noise ratio (SINR) constraints. Adopting the distance preserving constructive interference regions (DPCIR), we first derive a simplified reformulation of the problem. Then, we analyze the structure of the optimal solution using the Karush-Kuhn-Tucker (KKT) optimality conditions. This leads us to obtain a closed-form sub-optimal SLP solution (CF-SLP) for the original problem. Meanwhile, we obtain the necessary and sufficient condition under which the power minimizer SLP is equivalent to the conventional zero-forcing beamforming (ZFBF). Simulation results show that CF-SLP provides significant gains over ZFBF, while performing quite close to the optimal SLP in scenarios with rather small number of users. The results further indicate that the CF-SLP method has a reduction of order 1000 in computational time compared to the optimal solution. [less ▲] Detailed reference viewed: 117 (27 UL)Symbol-Level Precoding Design Based on Distance Preserving Constructive Interference Regions Haqiqatnejad, Alireza ; Kayhan, Farbod ; Ottersten, Björn in IEEE Transactions on Signal Processing (2018), 66(22), 5817-5832 In this paper, we investigate the symbol-level precoding (SLP) design problem in the downlink of a multiuser multiple-input single-output (MISO) channel. We consider generic two-dimensional constellations ... [more ▼] In this paper, we investigate the symbol-level precoding (SLP) design problem in the downlink of a multiuser multiple-input single-output (MISO) channel. We consider generic two-dimensional constellations with any shape and size, and confine ourselves to one of the main categories of constructive interference regions (CIR), namely, distance preserving CIR (DPCIR). We provide a comprehensive study of DPCIRs and derive several properties for these regions. Using these properties, we first show that any signal in a given DPCIR has a norm greater than or equal to the norm of the corresponding constellation point if and only if the convex hull of the constellation contains the origin. It is followed by proving that the power of the noise-free received signal in a DPCIR is a monotonic strictly increasing function of two parameters relating to the infinite Voronoi edges. Using the convex description of DPCIRs and their characteristics, we formulate two design problems, namely, the SLP power minimization with signal-to-interference-plus-noise ratio (SINR) constraints, and the SLP SINR balancing problem under max-min fairness criterion. The SLP power minimization based on DPCIRs can straightforwardly be written as a quadratic programming (QP). We derive a simplified reformulation of this problem which is less computationally complex. The SLP max-min SINR, however, is non-convex in its original form, and hence difficult to tackle. We propose alternative optimization approaches, including semidefinite programming (SDP) formulation and block coordinate descent (BCD) optimization. We discuss and evaluate the loss due to the proposed alternative methods through extensive simulation results. [less ▲] Detailed reference viewed: 128 (22 UL)Symbol-Level Precoding Design for Max-Min SINR in Multiuser MISO Broadcast Channels Haqiqatnejad, Alireza ; Kayhan, Farbod ; Ottersten, Björn in International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata 25-28 June 2018 (2018, August 27) In this paper, we address the symbol level precoding (SLP) design problem under max-min SINR criterion in the downlink of multiuser multiple-input single-output (MISO) channels. First, we show that the ... [more ▼] In this paper, we address the symbol level precoding (SLP) design problem under max-min SINR criterion in the downlink of multiuser multiple-input single-output (MISO) channels. First, we show that the distance preserving constructive interference regions (DPCIR) are always polyhedral angles (shifted pointed cones) for any given constellation point with unbounded decision region. Then we prove that any signal in a given unbounded DPCIR has a norm larger than the norm of the corresponding vertex if and only if the convex hull of the constellation contains the origin. Using these properties, we show that the power of the noiseless received signal lying on an unbounded DPCIR is an strictly increasing function of two parameters. This allows us to reformulate the originally non-convex SLP max-min SINR as a convex optimization problem. We discuss the loss due to our proposed convex reformulation and provide some simulation results. [less ▲] Detailed reference viewed: 92 (19 UL)Constructive Interference for Generic Constellations Haqiqatnejad, Alireza ; Kayhan, Farbod ; Ottersten, Björn in IEEE Signal Processing Letters (2018), 25(4), 586-590 In this letter, we investigate optimal and relaxed constructive interference regions (CIR) for the symbol-level precoding (SLP) problem in the downlink of a multiuser multiple-input single-output (MISO ... [more ▼] In this letter, we investigate optimal and relaxed constructive interference regions (CIR) for the symbol-level precoding (SLP) problem in the downlink of a multiuser multiple-input single-output (MISO) channel.We define two types of CIRs, namely, distance preserving CIR (DPCIR) and union bound CIR (UBCIR) for any given constellation shape and size. We then provide a systematic way to describe these regions as convex sets. Using the definitions of DPCIR and UBCIR, we show that the SLP power minimization problem, minimizing either sum or peak (per-antenna) transmit power, can always be formulated as a convex optimization problem. Our results indicate that these regions allow further reduction of the transmit power compared to the current state of the art without increasing the computational complexity at the transmitter or receiver. [less ▲] Detailed reference viewed: 193 (33 UL)Symbol vs Block Level Precoding in Multi-beam Satellite Systems Kayhan, Farbod ; Haqiqatnejad, Alireza ; et al in Symbol vs Block Level Precoding in Multi-beam Satellite Systems (2018) Precoding techniques for multi-beam satellite systems have received a considerable attention in recent years as a tool to mitigate the interference among the beams, and hence increasing the throughput ... [more ▼] Precoding techniques for multi-beam satellite systems have received a considerable attention in recent years as a tool to mitigate the interference among the beams, and hence increasing the throughput. Our goal is to compare two main categories of precoding schemes, namely, the conventional linear block level precoding and the symbol level precoding. Focusing on power minimization problem with signal to interference plus noise ratio (SINR) constraints, symbol level precoding (SLP) has significant gains with respect to the zero forcing (ZF). However, the lower transmit power is achieved with a price: A higher computational complexity. Therefore, several sub-optimal SLP techniques have been proposed in the literature to overcome the complexity. While ZF has the lowest complexity among the techniques chosen in this paper, it is not an optimal linear block level precoder as far as power minimization is concerned. Therefore, in order to have a more complete picture, one needs also to consider optimal block level precoders. Our results indicate that in order to have a fair comparison, one needs to consider two different scenarios, namely, low and high SINR threshold regimes. While for low SINRs the optimal linear block level precoding scheme may provide a good solution with reasonable complexity, for high SINR threshold, the SLP techniques become more attractive. Our results also indicate that the performance of SLP highly depends on the chosen constellation space, and therefore a final conclusion can be achieved only after appropriately optimizing the constellation set. [less ▲] Detailed reference viewed: 86 (17 UL)Unified Satellite and Terrestrial ACM Design Haqiqatnejad, Alireza ; Kayhan, Farbod in International Communications Satellite Systems Conference (ICSSC), Trieste 16-19 October 2017 (2017, October 17) First step towards integrating satellite and terrestrial standards at the physical layer is to design a unified packet frame structure, and in particular, a unified adaptive coding and modulation (ACM ... [more ▼] First step towards integrating satellite and terrestrial standards at the physical layer is to design a unified packet frame structure, and in particular, a unified adaptive coding and modulation (ACM) scheme without substantial loss in either of the systems. In this paper we introduce a methodology to design such a set of modulation and coding (MODCOD) combinations. In the first step, we design a set of base MODCODs for the AWGN channel. Then, for any other given channel model, we build a new set of MODCODs through a suitable transformation of the base MODCODs. We mainly focus on two types of channels: (a) non-linear satellite channels, and (b) AWGN channels with fading. We compare our results with latest digital video broadcasting standards, namely, DVB-T2 and DVB-S2X. [less ▲] Detailed reference viewed: 196 (34 UL) |
||