References of "Hallhuber, Matthias"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailConditional neuronal nitric oxide synthase overexpression impairs myocardial contractility.
Burkard, Natalie; Rokita, Adam G.; Kaufmann, Susann G. et al

in Circulation Research (2007), 100(3), 32-44

The role of the neuronal NO synthase (nNOS or NOS1) enzyme in the control of cardiac function still remains unclear. Results from nNOS(-/-) mice or from pharmacological inhibition of nNOS are ... [more ▼]

The role of the neuronal NO synthase (nNOS or NOS1) enzyme in the control of cardiac function still remains unclear. Results from nNOS(-/-) mice or from pharmacological inhibition of nNOS are contradictory and do not pay tribute to the fact that probably spatial confinement of the nNOS enzyme is of major importance. We hypothesize that the close proximity of nNOS and certain effector molecules like L-type Ca(2+)-channels has an impact on myocardial contractility. To test this, we generated a new transgenic mouse model allowing conditional, myocardial specific nNOS overexpression. Western blot analysis of transgenic nNOS overexpression showed a 6-fold increase in nNOS protein expression compared with noninduced littermates (n=12; P<0.01). Measuring of total NOS activity by conversion of [(3)H]-l-arginine to [(3)H]-l-citrulline showed a 30% increase in nNOS overexpressing mice (n=18; P<0.05). After a 2 week induction, nNOS overexpression mice showed reduced myocardial contractility. In vivo examinations of the nNOS overexpressing mice revealed a 17+/-3% decrease of +dp/dt(max) compared with noninduced mice (P<0.05). Likewise, ejection fraction was reduced significantly (42% versus 65%; n=15; P<0.05). Interestingly, coimmunoprecipitation experiments indicated interaction of nNOS with SR Ca(2+)ATPase and additionally with L-type Ca(2+)- channels in nNOS overexpressing animals. Accordingly, in adult isolated cardiac myocytes, I(Ca,L) density was significantly decreased in the nNOS overexpressing cells. Intracellular Ca(2+)-transients and fractional shortening in cardiomyocytes were also clearly impaired in nNOS overexpressing mice versus noninduced littermates. In conclusion, conditional myocardial specific overexpression of nNOS in a transgenic animal model reduced myocardial contractility. We suggest that nNOS might suppress the function of L-type Ca(2+)-channels and in turn reduces Ca(2+)-transients which accounts for the negative inotropic effect. [less ▲]

Detailed reference viewed: 114 (1 UL)
Full Text
Peer Reviewed
See detailInhibition of nuclear import of calcineurin prevents myocardial hypertrophy.
Hallhuber, Matthias; Burkard, Natalie; Wu, Rongxue et al

in Circulation Research (2006), 99(6), 626-35

The time that transcription factors remain nuclear is a major determinant for transcriptional activity. It has recently been demonstrated that the phosphatase calcineurin is translocated to the nucleus ... [more ▼]

The time that transcription factors remain nuclear is a major determinant for transcriptional activity. It has recently been demonstrated that the phosphatase calcineurin is translocated to the nucleus with the transcription factor nuclear factor of activated T cells (NF-AT). This study identifies a nuclear localization sequence (NLS) and a nuclear export signal (NES) in the sequence of calcineurin. Furthermore we identified the nuclear cargo protein importinbeta(1) to be responsible for nuclear translocation of calcineurin. Inhibition of the calcineurin/importin interaction by a competitive peptide (KQECKIKYSERV), which mimicked the calcineurin NLS, prevented nuclear entry of calcineurin. A noninhibitory control peptide did not interfere with the calcineurin/importin binding. Using this approach, we were able to prevent the development of myocardial hypertrophy. In angiotensin II-stimulated cardiomyocytes, [(3)H]-leucine incorporation (159%+/-9 versus 111%+/-11; P<0.01) and cell size were suppressed significantly by the NLS peptide compared with a control peptide. The NLS peptide inhibited calcineurin/NF-AT transcriptional activity (227%+/-11 versus 133%+/-8; P<0.01), whereas calcineurin phosphatase activity was unaffected (298%+/-9 versus 270%+/-11; P=NS). We conclude that calcineurin is not only capable of dephosphorylating NF-AT, thus enabling its nuclear import, but the presence of calcineurin in the nucleus is also important for full NF-AT transcriptional activity. [less ▲]

Detailed reference viewed: 114 (1 UL)