References of "Groues, Valentin 50009305"
     in
Bookmark and Share    
Full Text
See detailSMASCH: Facilitating multi-appointment scheduling in longitudinal clinical research studies and care programs
Vega Moreno, Carlos Gonzalo UL; Gawron, Piotr UL; Lebioda, Jacek et al

Poster (2022, September 20)

Longitudinal clinical research studies require conducting various assessments over long periods of time. Such assessments comprise numerous stages, requiring different resources defined by ... [more ▼]

Longitudinal clinical research studies require conducting various assessments over long periods of time. Such assessments comprise numerous stages, requiring different resources defined by multidisciplinary research staff and aligned with available infrastructure and equipment, altogether constrained by time. While it is possible to manage the allocation of resources manually, it is complex and error-prone. Efficient multi-appointment scheduling is essential to assist clinical teams, ensuring high participant retention and producing successful clinical studies, directly impacting patient throughput and satisfaction. We present Smart Scheduling (SMASCH) system [1], a web application for multi-appointment scheduling management aiming to reduce times, optimise resources and secure personal identifiable information. SMASCH facilitates clinical research and integrated care programs in Luxembourg, providing features to better manage multi-appointment scheduling problems (MASPs) characteristic of longitudinal clinical research studies and speed up management tasks. It is present in multiple clinical research and integrated care programs in Luxembourg since 2017, including Dementia Prevention Program, the study for Mild Cognitive Impairment and gut microbiome, and the National Centre of Excellence in Research on Parkinson’s disease [2] which encompasses the study for REM sleep behaviour disorder and the Luxembourg Parkinson’s Study. SMASCH is a free and open-source solution available both as a Linux package and Docker image. [less ▲]

Detailed reference viewed: 46 (2 UL)
Full Text
Peer Reviewed
See detailSmart Scheduling (SMASCH): multi-appointment scheduling system for longitudinal clinical research studies.
Vega Moreno, Carlos Gonzalo UL; Gawron, Piotr UL; Lebioda, Jacek UL et al

in JAMIA open (2022), 5(2), 038

OBJECTIVE: Facilitate the multi-appointment scheduling problems (MASPs) characteristic of longitudinal clinical research studies. Additional goals include: reducing management time, optimizing clinical ... [more ▼]

OBJECTIVE: Facilitate the multi-appointment scheduling problems (MASPs) characteristic of longitudinal clinical research studies. Additional goals include: reducing management time, optimizing clinical resources, and securing personally identifiable information. MATERIALS AND METHODS: Following a model view controller architecture, we developed a web-based tool written in Python 3. RESULTS: Smart Scheduling (SMASCH) system facilitates clinical research and integrated care programs in Luxembourg, providing features to better manage MASPs and speed up management tasks. It is available both as a Linux package and Docker image (https://smasch.pages.uni.lu). DISCUSSION: The long-term requirements of longitudinal clinical research studies justify the employment of flexible and well-maintained frameworks and libraries through an iterative software life-cycle suited to respond to rapidly changing scenarios. CONCLUSIONS: SMASCH is a free and open-source scheduling system for clinical studies able to satisfy recent data regulations providing features for better data accountability. Better scheduling systems can help optimize several metrics that ultimately affect the success of clinical studies. [less ▲]

Detailed reference viewed: 41 (2 UL)
Full Text
Peer Reviewed
See detailCOVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms.
Ostaszewski, Marek UL; Niarakis, Anna; Mazein, Alexander UL et al

in Molecular systems biology (2021), 17(10), 10387

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets ... [more ▼]

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective. [less ▲]

Detailed reference viewed: 95 (3 UL)
Full Text
See detailSupporting findability of COVID-19 research with large-scale text mining of scientific publications
Welter, Danielle UL; Vega Moreno, Carlos Gonzalo UL; Biryukov, Maria UL et al

Poster (2020, November 27)

When the COVID-19 pandemic hit in early 2020, a lot of research efforts were quickly redirected towards studies on SARS-CoV2 and COVID-19 disease, from the sequencing and assembly of viral genomes to the ... [more ▼]

When the COVID-19 pandemic hit in early 2020, a lot of research efforts were quickly redirected towards studies on SARS-CoV2 and COVID-19 disease, from the sequencing and assembly of viral genomes to the elaboration of robust testing methodologies and the development of treatment and vaccination strategies. At the same time, a flurry of scientific publications around SARS-CoV-2 and COVID-19 began to appear, making it increasingly difficult for researchers to stay up-to-date with latest trends and developments in this rapidly evolving field. The BioKB platform is a pipeline which, by exploiting text mining and semantic technologies, helps researchers easily access semantic content of thousands of abstracts and full text articles. The content of the articles is analysed and concepts from a range of contexts, including proteins, species, chemicals, diseases and biological processes are tagged based on existing dictionaries of controlled terms. Co-occurring concepts are classified based on their asserted relationship and the resulting subject-relation-object triples are stored in a publicly accessible human- and machine-readable knowledge base. All concepts in the BioKB dictionaries are linked to stable, persistent identifiers, either a resource accession such as an Ensembl, Uniprot or PubChem ID for genes, proteins and chemicals, or an ontology term ID for diseases, phenotypes and other ontology terms. In order to improve COVID-19 related text mining, we extended the underlying dictionaries to include many additional viral species (via NCBI Taxonomy identifiers), phenotypes from the Human Phenotype Ontology (HPO), COVID-related concepts including clinical and laboratory tests from the COVID-19 ontology, as well as additional diseases (DO) and biological processes (GO). We also added all viral proteins found in UniProt and gene entries from EntrezGene to increase the sensitivity of the text mining pipeline to viral data. To date, BioKB has indexed over 270’000 sentences from 21’935 publications relating to coronavirus infections, with publications dating from 1963 to 2021, 3’863 of which were published this year. We are currently working to further refine the text mining pipeline by training it on the extraction of increasingly complex relations such as protein-phenotype relationships. We are also regularly adding new terms to our dictionaries for areas where coverage is currently low, such as clinical and laboratory tests and procedures and novel drug treatments. [less ▲]

Detailed reference viewed: 140 (14 UL)
Full Text
See detailBioKC: a platform for quality controlled curation and annotation of systems biology models
Vega Moreno, Carlos Gonzalo UL; Groues, Valentin UL; Ostaszewski, Marek UL et al

Scientific Conference (2020, September 04)

Standardisation of biomedical knowledge into systems biology models is essential for the study of the biological function. However, biomedical knowledge curation is a laborious manual process aggravated ... [more ▼]

Standardisation of biomedical knowledge into systems biology models is essential for the study of the biological function. However, biomedical knowledge curation is a laborious manual process aggravated by the ever increasing growth of biomedical literature. High quality curation currently relies on pathway databases where outsider participation is minimal. The increasing demand of systems biology knowledge presents new challenges regarding curation, calling for new collaborative functionalities to improve quality control of the review process. These features are missing in the current systems biology environment, whose tools are not well suited for an open community-based model curation workflow. On one hand, diagram editors such as CellDesigner or Newt provide limited annotation features. On the other hand, most popular text annotations tools are not aimed for biomedical text annotation or model curation. Detaching the model curation and annotation tasks from diagram editing improves model iteration and centralizes the annotation of such models with supporting evidence. In this vain, we present BioKC, a web-based platform for systematic quality-controlled collaborative curation and annotation of biomedical knowledge following the standard data model from Systems Biology Markup Language (SBML). [less ▲]

Detailed reference viewed: 136 (6 UL)
Full Text
See detailBioKC: a collaborative platform for systems biology model curation and annotation
Vega Moreno, Carlos Gonzalo UL; Groues, Valentin UL; Ostaszewski, Marek UL et al

in bioRxiv (2020)

Curation of biomedical knowledge into standardised and inter-operable systems biology models is essential for studying complex biological processes. However, systems-level curation is a laborious manual ... [more ▼]

Curation of biomedical knowledge into standardised and inter-operable systems biology models is essential for studying complex biological processes. However, systems-level curation is a laborious manual process, especially when facing ever increasing growth of domain literature. Currently, these systems-level curation efforts concentrate around dedicated pathway databases, with a limited input from the research community. The demand for systems biology knowledge increases with new findings demonstrating elaborate relationships between multiple molecules, pathways and cells. This new challenge calls for novel collaborative tools and platforms allowing to improve the quality and the output of the curation process. In particular, in the current systems biology environment, curation tools lack reviewing features and are not well suited for an open, community-based curation workflows. An important concern is the complexity of the curation process and the limitations of the tools supporting it. Currently, systems-level curation combines model-building with diagram layout design. However, diagram editing tools offer limited annotation features. On the other hand, text-oriented tools have insufficient capabilities representing and annotating relationships between biological entities. Separating model curation and annotation from diagram editing enables iterative and distributed building of annotated models. Here, we present BioKC (Biological Knowledge Curation), a web-based collaborative platform for the curation and annotation of biomedical knowledge following the standard data model from Systems Biology Markup Language (SBML).Competing Interest StatementThe authors have declared no competing interest. [less ▲]

Detailed reference viewed: 221 (14 UL)
Full Text
Peer Reviewed
See detailDAISY: A Data Information System for accountability under the General Data Protection Regulation
Becker, Regina UL; Alper, Pinar UL; Groues, Valentin UL et al

in GigaScience (2019), 8(12),

The new European legislation on data protection, namely, the General Data Protection Regulation (GDPR), has introduced comprehensive requirements for the documentation about the processing of personal ... [more ▼]

The new European legislation on data protection, namely, the General Data Protection Regulation (GDPR), has introduced comprehensive requirements for the documentation about the processing of personal data as well as informing the data subjects of its use. GDPR’s accountability principle requires institutions, projects, and data hubs to document their data processings and demonstrate compliance with the GDPR. In response to this requirement, we see the emergence of commercial data-mapping tools, and institutions creating GDPR data register with such tools. One shortcoming of this approach is the genericity of tools, and their process-based model not capturing the project-based, collaborative nature of data processing in biomedical research.We have developed a software tool to allow research institutions to comply with the GDPR accountability requirement and map the sometimes very complex data flows in biomedical research. By analysing the transparency and record-keeping obligations of each GDPR principle, we observe that our tool effectively meets the accountability requirement.The GDPR is bringing data protection to center stage in research data management, necessitating dedicated tools, personnel, and processes. Our tool, DAISY, is tailored specifically for biomedical research and can help institutions in tackling the documentation challenge brought about by the GDPR. DAISY is made available as a free and open source tool on Github. DAISY is actively being used at the Luxembourg Centre for Systems Biomedicine and the ELIXIR-Luxembourg data hub. [less ▲]

Detailed reference viewed: 260 (41 UL)
Full Text
Peer Reviewed
See detailBSA4Yeast: Web-based quantitative trait locus linkage analysis and bulk segregant analysis of yeast sequencing data
Zhang, Zhi; Jung, Paul; Groues, Valentin UL et al

in GigaScience (2019), 8(6), 060

Quantitative Trait Loci (QTL) mapping using bulk segregants is an effective approach for identifying genetic variants associated with phenotypes of interest in model organisms. By exploiting next ... [more ▼]

Quantitative Trait Loci (QTL) mapping using bulk segregants is an effective approach for identifying genetic variants associated with phenotypes of interest in model organisms. By exploiting next-generation sequencing technology, the QTL mapping accuracy can be improved significantly, providing a valuable means to annotate new genetic variants. However, setting up a comprehensive analysis framework for this purpose is a time-consuming and error prone task, posing many challenges for scientists with limited experience in this domain. Findings: Here, we present BSA4Yeast, a comprehensive web-application for QTL mapping via bulk segregant analysis of yeast sequencing data. The software provides an automated and efficiency-optimized data processing, up-to-date functional annotations, and an interactive web-interface to explore identified QTLs. Conclusion: BSA4Yeast enables researchers to identify plausible candidate genes in QTL regions efficiently in order to validate their genetic variations experimentally as causative for a phenotype of interest. BSA4Yeast is freely available at https://bsa4yeast.lcsb.uni.lu. [less ▲]

Detailed reference viewed: 273 (24 UL)
Full Text
Peer Reviewed
See detailFractalis: A scalable open-source service for platform-independent interactive visual analysis of biomedical data
Herzinger, Sascha UL; Groues, Valentin UL; Gu, Wei UL et al

in GigaScience (2018)

Background: Translational research platforms share the aim to promote a deeper understanding of stored data by providing visualization and analysis tools for data exploration and hypothesis generation ... [more ▼]

Background: Translational research platforms share the aim to promote a deeper understanding of stored data by providing visualization and analysis tools for data exploration and hypothesis generation. However, such tools are usually platform-bound and are not easily reusable by other systems. Furthermore, they rarely address access restriction issues when direct data transfer is not permitted. In this article we present an analytical service that works in tandem with a visualization library to address these problems. Findings: Using a combination of existing technologies and a platform-specific data abstraction layer we developed a service that is capable of providing existing web-based data warehouses and repositories with platform-independent visual analytical capabilities. The design of this service also allows for federated data analysis by eliminating the need to move the data directly to the researcher. Instead, all operations are based on statistics and interactive charts without direct access to the dataset. Conclusion: The software presented in this article has a potential to help translational researchers achieve a better understanding of a given dataset and quickly generate new hypothesis. Furthermore, it provides a framework that can be used to share and reuse explorative analysis tools within the community. [less ▲]

Detailed reference viewed: 276 (27 UL)