References of "Ginolhac, Aurélien 50001856"
     in
Bookmark and Share    
Full Text
Peer Reviewed
See detailThe gut microbial metabolite formate exacerbates colorectal cancer progression
Ternes, Dominik UL; Tsenkova, Mina UL; Pozdeev, Vitaly UL et al

in Nature Metabolism (2022)

The gut microbiome is a key player in the immunomodulatory and protumorigenic microenvironment during colorectal cancer (CRC), as different gut-derived bacteria can induce tumour growth. However, the ... [more ▼]

The gut microbiome is a key player in the immunomodulatory and protumorigenic microenvironment during colorectal cancer (CRC), as different gut-derived bacteria can induce tumour growth. However, the crosstalk between the gut microbiome and the host in relation to tumour cell metabolism remains largely unexplored. Here we show that formate, a metabolite produced by the CRC-associated bacterium Fusobacterium nucleatum, promotes CRC development. We describe molecular signatures linking CRC phenotypes with Fusobacterium abundance. Cocultures of F. nucleatum with patient-derived CRC cells display protumorigenic effects, along with a metabolic shift towards increased formate secretion and cancer glutamine metabolism. We further show that microbiome-derived formate drives CRC tumour invasion by triggering AhR signalling, while increasing cancer stemness. Finally, F. nucleatum or formate treatment in mice leads to increased tumour incidence or size, and Th17 cell expansion, which can favour proinflammatory profiles. Moving beyond observational studies, we identify formate as a gut-derived oncometabolite that is relevant for CRC progression. [less ▲]

Detailed reference viewed: 199 (14 UL)
Full Text
Peer Reviewed
See detailFocal adhesion kinase plays a dual role in TRAIL resistance and metastatic outgrowth of malignant melanoma
Del Mistro, Greta; Riemann, Shamala; Schindler, Sebastian et al

in Cell Death and Disease (2022)

Despite remarkable advances in therapeutic interventions, malignant melanoma (MM) remains a life-threating disease. Following high initial response rates to targeted kinase-inhibition metastases quickly ... [more ▼]

Despite remarkable advances in therapeutic interventions, malignant melanoma (MM) remains a life-threating disease. Following high initial response rates to targeted kinase-inhibition metastases quickly acquire resistance and present with enhanced tumor progression and invasion, demanding alternative treatment options. We show 2nd generation hexameric TRAIL-receptor-agonist IZI1551 (IZI) to effectively induce apoptosis in MM cells irrespective of the intrinsic BRAF/NRAS mutation status. Conditioning to the EC50 dose of IZI converted the phenotype of IZI-sensitive parental MM cells into a fast proliferating and invasive, IZI-resistant metastasis. Mechanistically, we identified focal adhesion kinase (FAK) to play a dual role in phenotype-switching. In the cytosol, activated FAK triggers survival pathways in a PI3K- and MAPK-dependent manner. In the nucleus, the FERM domain of FAK prevents activation of wtp53, as being expressed in the majority of MM, and consequently intrinsic apoptosis. Caspase-8-mediated cleavage of FAK as well as FAK knockdown, and pharmacological inhibition, respectively, reverted the metastatic phenotype-switch and restored IZI responsiveness. FAK inhibition also re-sensitized MM cells isolated from patient metastasis that had relapsed from targeted kinase inhibition to cell death, irrespective of the intrinsic BRAF/NRAS mutation status. Hence, FAK-inhibition alone or in combination with 2nd generation TRAIL-receptor agonists may be recommended for treatment of initially resistant and relapsed MM, respectively. [less ▲]

Detailed reference viewed: 96 (7 UL)
Full Text
Peer Reviewed
See detailNF-κB and TNF Affect the Astrocytic Differentiation from Neural Stem Cells
Grandbarbe, Luc UL; Michelucci, Alessandro UL; Heuschling, Paul UL et al

in Cells (2021)

The NF-κB signaling pathway is crucial during development and inflammatory processes. We have previously shown that NF-κB activation induces dedifferentiation of astrocytes into neural progenitor cells ... [more ▼]

The NF-κB signaling pathway is crucial during development and inflammatory processes. We have previously shown that NF-κB activation induces dedifferentiation of astrocytes into neural progenitor cells (NPCs). Here, we provide evidence  that the NF-κB pathway plays also a fundamental role during the differentiation of NPCs into astrocytes. First, we show that the NF-κB pathway is essential to initiate astrocytic differentiation as its early inhibition induces NPC apoptosis and impedes their differentiation. Second, we demonstrate that persistent NF-κB activation affects NPC-derived astrocyte differentiation. Tumor necrosis factor (TNF)-treated NPCs show NF-κB activation, maintain their multipotential and proliferation properties, display persistent expression of immature markers and inhibit astrocyte markers. Third, we analyze the effect of  NF-κB activation on the main known astrocytic differentiation pathways, such as NOTCH and JAK-STAT. Our findings suggest that the NF-κB pathway plays a dual fundamental role during NPC differentiation into astrocytes: it promotes astrocyte specification, but its persistent activation impedes their differentiation. [less ▲]

Detailed reference viewed: 62 (8 UL)
Full Text
Peer Reviewed
See detailSystematic transcriptional profiling of responses to STAT1- and STAT3- activating cytokines in different cancer types
Kirchmeyer, Mélanie UL; Servais, Florence UL; Ginolhac, Aurélien UL et al

in Journal of Molecular Biology (2020)

Cytokines orchestrate responses to pathogens and in inflammatory processes but they also play an important role in cancer by shaping the expression levels of cytokine response genes. Here, we conducted a ... [more ▼]

Cytokines orchestrate responses to pathogens and in inflammatory processes but they also play an important role in cancer by shaping the expression levels of cytokine response genes. Here, we conducted a large profiling study comparing miRNome and mRNA transcriptome data generated following different cytokine stimulations. Transcriptomic responses to STAT1- (IFN, IL-27) and STAT3-activating cytokines (IL6, OSM) were systematically compared in nine cancerous and nonneoplastic cell lines of different tissue origins (skin, liver and colon). The largest variation in our datasets was seen between cell lines of the three different tissues rather than stimuli. Notably, the variability in miRNome datasets was a lot more pronounced than in mRNA data. Our data also revealed that cells of skin, liver and colon tissues respond very differently to cytokines and that the cell signaling networks activated or silenced in response to STAT1- or STAT3- activating cytokines are specific to the tissue and the type of cytokine. However, globally, STAT1-activating cytokines had stronger effects than STAT3-inducing cytokines with most significant responses in liver cells, showing more genes up-regulated and with higher fold change. A more detailed analysis of gene regulations upon cytokine stimulation in these cells provided insights into STAT1- versus STAT3-driven processes in hepatocarcinogenesis. Finally, independent component analysis revealed interconnected transcriptional networks distinct between cancer cells and their healthy counterparts. [less ▲]

Detailed reference viewed: 272 (22 UL)
Full Text
Peer Reviewed
See detailPhagocytosis‐related NADPH oxidase 2 subunit gp91phox contributes to neurodegeneration after repeated systemic challenge with lipopolysaccharides
Shahraz, Anahita; Wißfeld, Jannis; Ginolhac, Aurélien UL et al

in Glia (2020)

Repeated systemic challenge with lipopolysaccharides (LPS) can induce microglia activation and inflammatory neurodegeneration in the substantia nigra pars compacta region of mice. We now explored the role ... [more ▼]

Repeated systemic challenge with lipopolysaccharides (LPS) can induce microglia activation and inflammatory neurodegeneration in the substantia nigra pars compacta region of mice. We now explored the role of mononuclear phagocytes associated nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX‐2) in inflammatory neurodegeneration. Cybb ‐deficient NOX‐2 knock‐out (KO) and control wild type (WT) mice were treated intraperitoneally daily over four consecutive days with 1 μg/gbw/day LPS. Transcriptome analysis by RNA‐seq of total brain tissue indicated increased LPS‐induced upregulation of genes belonging to the reactive oxygen species and reactive nitrogen species production, complement and lysosome activation as well as apoptosis and necroptosis in WT compared to NOX‐2 KO mice. Validation of up‐regulated gene transcripts via qRT‐PCR confirmed that LPS‐challenged NOX‐2 KO mice expressed lower levels of the microglial phagocytosis‐related genes Nos2 , Cd68 , Aif1/Iba1 , Cyba , Itgam , and Fcer1g compared to WT mice at Day 5 after systemic inflammatory challenge, but no significant differences in the pro‐inflammatory genes Tnfα and Il1b as well as microglial IBA1 and CD68 intensities were observed between both genotypes. Furthermore, loss of tyrosine hydroxylase positive (TH+) and NeuN positive neurons in the substantia nigra pars compacta upon repeated systemic LPS application were attenuated in NOX‐2 KO mice. Thus, our data demonstrate that loss of dopaminergic neurons in the substantia nigra pars compacta after repeated systemic challenge with LPS is associated with a microglial phagocytosis‐related gene activation profile involving the NADPH oxidase subunit Cybb/gp91phox. [less ▲]

Detailed reference viewed: 126 (2 UL)
Full Text
See detailUnderstanding the role of Fusobacterium nucleatum metabolism in colon cancer initiation and progression
Ternes, Dominik UL; Karta, Jessica UL; Tsenkova, Mina UL et al

Poster (2020, February 22)

Accumulating evidence suggests that dysbiosis, a state of pathological imbalance in the human gut microbiome, is present in patients suffering from colorectal cancer (CRC). 16S rRNA gene sequencing, as ... [more ▼]

Accumulating evidence suggests that dysbiosis, a state of pathological imbalance in the human gut microbiome, is present in patients suffering from colorectal cancer (CRC). 16S rRNA gene sequencing, as well as metagenomic and metatranscriptomic analyses, identified specific bacteria being associated with CRC. Among others, Fusobacterium ssp. have been found to directly interact with cancer or immune cells of their host. However, only a limited number of CRC-associated microbes have been examined for host-microbial interactions and, as such, the role of bacteria in the etiology of the disease remains largely elusive. Our aim is the development of predictive and experimental models that allow to not only study the host-microbiota interactions but are also amenable to high-throughput experimentation and large-scale omics-data integration. Ultimately, such models should help to get from meta-omics to cellular mechanism and, moreover, serve as tools for reproducible analyses of host-microbial interaction mechanisms of on a transcriptomic, proteomic, and metabolomic level. Our research proposes an integrative study approach allowing us to bridge meta-omics with functional mechanisms by focusing on the interaction taking place between F. nucleatum and patient-derived CRC cells. [less ▲]

Detailed reference viewed: 249 (35 UL)
Full Text
Peer Reviewed
See detailReduced sialylation triggers homeostatic synapse and neuronal loss in middle-aged mice
Klaus, Christine; Hansen, Jan N.; Ginolhac, Aurélien UL et al

in Neurobiology of Aging (2020)

Sialic acid-binding receptors (Siglecs) are linked to neurodegenerative processes, but the role of sialic acids in physiological aging is still not fully understood. We investigated the impact of reduced ... [more ▼]

Sialic acid-binding receptors (Siglecs) are linked to neurodegenerative processes, but the role of sialic acids in physiological aging is still not fully understood. We investigated the impact of reduced sialylation in the brain of mice heterozygous for the enzyme glucosamine-2-epimerase/N-acetylmannosamine kinase (GNE+/-) that is essential for sialic acid biosynthesis. We demonstrate that GNE+/- mice have hyposialylation in different brain regions, less synapses in the hippocampus and reduced microglial arborization already at 6 months followed by increased loss of neurons at 12 months. A transcriptomic analysis revealed no pro-inflammatory changes indicating an innate homeostatic immune process leading to the removal of synapses and neurons in GNE+/- mice during aging. Crossbreeding with complement C3-deficient mice rescued the earlier onset of neuronal and synaptic loss as well as the changes in microglial arborization. Thus, sialic acids of the glycocalyx contribute to brain homeostasis and act as a recognition system for the innate immune system in the brain. [less ▲]

Detailed reference viewed: 102 (13 UL)
Full Text
Peer Reviewed
See detailIdentification of genes under dynamic post-transcriptional regulation from time-series epigenomic data
Becker, Julia Christina UL; Gerard, Déborah UL; Ginolhac, Aurélien UL et al

in Epigenomics (2019)

Aim: Prediction of genes under dynamic post-transcriptional regulation from epigenomic data. Materials & methods: We used time-series profiles of chromatin immunoprecipitation-seq data of histone ... [more ▼]

Aim: Prediction of genes under dynamic post-transcriptional regulation from epigenomic data. Materials & methods: We used time-series profiles of chromatin immunoprecipitation-seq data of histone modifications from differentiation of mesenchymal progenitor cells toward adipocytes and osteoblasts to predict gene expression levels at five time points in both lineages and estimated the deviation of those predictions from the RNA-seq measured expression levels using linear regression. Results & conclusion: The genes with biggest changes in their estimated stability across the time series are enriched for noncoding RNAs and lineage-specific biological processes. Clustering mRNAs according to their stability dynamics allows identification of post-transcriptionally coregulated mRNAs and their shared regulators through sequence enrichment analysis. We identify miR-204 as an early induced adipogenic microRNA targeting Akr1c14 and Il1rl1. [less ▲]

Detailed reference viewed: 319 (33 UL)
Full Text
Peer Reviewed
See detailEarly Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny.
Cappellini, Enrico; Welker, Frido; Pandolfi, Luca et al

in Nature (2019)

The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa(1). However, the irreversible post-mortem degradation(2) of ancient DNA has so ... [more ▼]

The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa(1). However, the irreversible post-mortem degradation(2) of ancient DNA has so far limited its recovery-outside permafrost areas-to specimens that are not older than approximately 0.5 million years (Myr)(3). By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I(4), and suggested the presence of protein residues in fossils of the Cretaceous period(5)-although with limited phylogenetic use(6). In the absence of molecular evidence, the speciation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch(7-9), using the proteome of dental enamel from a Stephanorhinus tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia)(10). Molecular phylogenetic analyses place this Stephanorhinus as a sister group to the clade formed by the woolly rhinoceros (Coelodonta antiquitatis) and Merck's rhinoceros (Stephanorhinus kirchbergensis). We show that Coelodonta evolved from an early Stephanorhinus lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus Stephanorhinus is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel-which is the hardest tissue in vertebrates(11), and is highly abundant in the fossil record-can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation. [less ▲]

Detailed reference viewed: 72 (7 UL)
Full Text
Peer Reviewed
See detailTemporal enhancer profiling of parallel lineages identifies AHR and GLIS1 as regulators of mesenchymal multipotency
Gerard, Déborah UL; Schmidt, Florian; Ginolhac, Aurélien UL et al

in Nucleic Acids Research (2018)

Temporal data on gene expression and context-specific open chromatin states can improve identification of key transcription factors (TFs) and the gene regulatory networks (GRNs) controlling cellular ... [more ▼]

Temporal data on gene expression and context-specific open chromatin states can improve identification of key transcription factors (TFs) and the gene regulatory networks (GRNs) controlling cellular differentiation. However, their integration remains challenging. Here, we delineate a general approach for data-driven and unbiased identification of key TFs and dynamic GRNs, called EPIC-DREM. We generated time-series transcriptomic and epigenomic profiles during differentiation of mouse multipotent bone marrow stromal cell line (ST2) toward adipocytes and osteoblasts. Using our novel approach we constructed time-resolved GRNs for both lineages and identifed the shared TFs involved in both differentiation processes. To take an alternative approach to prioritize the identified shared regulators, we mapped dynamic super-enhancers in both lineages and associated them to target genes with correlated expression profiles. The combination of the two approaches identified aryl hydrocarbon receptor (AHR) and Glis family zinc finger 1 (GLIS1) as mesenchymal key TFs controlled by dynamic cell type-specific super-enhancers that become repressed in both lineages. AHR and GLIS1 control differentiation-induced genes and their overexpression can inhibit the lineage commitment of the multipotent bone marrow-derived ST2 cells. [less ▲]

Detailed reference viewed: 184 (43 UL)
Full Text
Peer Reviewed
See detailTREM2 triggers microglial density and age‐related neuronal loss
Linnartz-Gerlach, Bettina; Bodea, Liviu-Gabriel; Klaus, Christine et al

in Glia (2018)

The microglial triggering receptor expressed on myeloid cells 2 (TREM2) signals via the activatory membrane adaptor molecule TYROBP. Genetic variants or mutations of TREM2 or TYROBP have been linked to ... [more ▼]

The microglial triggering receptor expressed on myeloid cells 2 (TREM2) signals via the activatory membrane adaptor molecule TYROBP. Genetic variants or mutations of TREM2 or TYROBP have been linked to inflammatory neurodegenerative diseases associated with aging. The typical aging process goes along with microglial changes and mild neuronal loss, but the exact contribution of TREM2 is still unclear. Aged TREM2 knock‐out mice showed decreased age‐related neuronal loss in the substantia nigra and the hippocampus. Transcriptomic analysis of the brains of 24 months old TREM2 knock‐out mice revealed 211 differentially expressed genes mostly downregulated and associated with complement activation and oxidative stress response pathways. Consistently, 24 months old TREM2 knock‐out mice showed lower transcription of microglial (Aif1 and Tmem119), oxidative stress markers (Inos, Cyba, and Cybb) and complement components (C1qa, C1qb, C1qc, C3, C4b, Itgam, and Itgb2), decreased microglial numbers and expression of the microglial activation marker Cd68, as well as accumulation of oxidized lipids. Cultured microglia of TREM2 knock‐out mice showed reduced phagocytosis and oxidative burst. Thus, microglial TREM2 contributes to age‐related microglial changes, phagocytic oxidative burst, and loss of neurons with possible detrimental effects during physiological aging. [less ▲]

Detailed reference viewed: 202 (20 UL)
See detailUL HPC Tutorial: Statistical Computing with R
Ginolhac, Aurélien UL; Emeras, Joseph; Varrette, Sébastien UL et al

Presentation (2018, June)

Detailed reference viewed: 134 (21 UL)
Full Text
Peer Reviewed
See detailThe PD-L1- and IL6-mediated dampening of the IL27/STAT1 anticancer responses are prevented by a-PD-L1 or a-IL6 antibodies
Rolvering, Catherine UL; Zimmer, Andreas David UL; Ginolhac, Aurélien UL et al

in Journal of Leukocyte Biology (2018), 104

Interleukin-27 (IL27) is a type-I cytokine of the IL6/IL12 family and is predominantly secreted by activated macrophages and dendritic cells.We show that IL27 induces STAT factor phosphorylation in ... [more ▼]

Interleukin-27 (IL27) is a type-I cytokine of the IL6/IL12 family and is predominantly secreted by activated macrophages and dendritic cells.We show that IL27 induces STAT factor phosphorylation in cancerous cell lines of different tissue origin. IL27 leads to STAT1 phosphorylation and recapitulates an IFN-𝛾-like response in the microarray analyses, with up-regulation of genes involved in antiviral defense, antigen presentation, and immune suppression. Like IFN-𝛾, IL27 leads to an up-regulation of TAP2 and MHC-I proteins, which mediate increased tumor immune clearance. However, both cytokines also upregulate proteins such as PD-L1 (CD274) and IDO-1, which are associatedwith immune escape of cancer. Interestingly, differential expression of these geneswas observed within the different cell lines and when comparing IL27 to IFN-𝛾. In coculture experiments of hepatocellular carcinoma (HCC) cells with peripheral blood mononuclear cells, pre-treatment of the HCC cells with IL27 resulted in lowered IL2 production by anti-CD3/-CD28 activated T-lymphocytes. Addition of anti-PD-L1 antibody, however, restored IL2 secretion. The levels of other TH1 cytokines were also enhanced or restored upon administration of anti-PD-L1. In addition, we show that the suppression of IL27 signaling by IL6-type cytokine prestimulation— mimicking a situation occurring, for example, in IL6-secreting tumors or in tumor inflammation–induced cachexia—can be antagonized by antibodies against IL6-type cytokines or their receptors. Therapeutically, the antitumor effects of IL27 (mediated, e.g., by increased antigen presentation) might thus be increased by combining IL27with blocking antibodies against PD-L1 or/and IL6-type cytokines. [less ▲]

Detailed reference viewed: 177 (14 UL)
Full Text
Peer Reviewed
See detailThe microRNA-371~373 cluster represses colon cancer initiation and metastatic colonization by inhibiting the TGFBR2/ID1 signaling axis.
Ullmann, Pit UL; Rodriguez, Fabien UL; Schmitz, Martine UL et al

in Cancer research (2018)

The vast majority of colorectal cancer (CRC)-related deaths can be attributed to metastatic spreading of the disease. Therefore, deciphering molecular mechanisms of metastatic dissemination is a key ... [more ▼]

The vast majority of colorectal cancer (CRC)-related deaths can be attributed to metastatic spreading of the disease. Therefore, deciphering molecular mechanisms of metastatic dissemination is a key prerequisite to improve future treatment options. With this aim, we took advantage of different CRC cell lines and recently established primary cultures enriched in colon cancer stem cells (CSCs) - also known as tumor-initiating cells (TICs) - to identify genes and microRNAs (miRNAs) with regulatory functions in CRC progression. We show here that metastasis-derived TICs display increased capacity for self-renewal, transforming growth factor beta (TGF-beta) signaling activity, and reduced expression of the miR-371~373 cluster compared to non-metastatic cultures. TGF-beta receptor 2 (TGFBR2) and aldehyde dehydrogenase A1 (ALDH1A1) were identified as important target genes of the miR-371~373 cluster. In addition, TGFBR2 repression, either by direct knockdown or indirectly via overexpression of the entire miR-371~373 cluster, decreased tumor-initiating potential of TICs. We observed significantly reduced in vitro self-renewal activity as well as lowered tumor-initiation and metastatic outgrowth capacity in vivo following stable overexpression of the miR-371~373 cluster in different colon TIC cultures. Inhibitor of DNA binding 1 (ID1) was affected by both TGFBR2 and miR-371~373 cluster alterations. Functional sphere and tumor formation as well as metastatic dissemination assays validated the link between miR-371~373 and ID1. Altogether, our results establish the miR-371~373/TGFBR2/ID1 signaling axis as a novel regulatory mechanism of TIC self-renewal and metastatic colonization. [less ▲]

Detailed reference viewed: 163 (17 UL)
Full Text
Peer Reviewed
See detailCytokine-mediated modulation of the hepatic miRNome: miR-146b-5p is an IL-6-inducible miRNA with multiple targets.
Kirchmeyer, Melanie; Servais, Florence UL; Hamdorf, Matthias et al

in Journal of leukocyte biology (2018)

Interleukin-6 (IL-6)-type cytokines play important roles in liver (patho-)biology. For instance, they regulate the acute phase response to inflammatory signals and are involved in hepatocarcinogenesis ... [more ▼]

Interleukin-6 (IL-6)-type cytokines play important roles in liver (patho-)biology. For instance, they regulate the acute phase response to inflammatory signals and are involved in hepatocarcinogenesis. Much is known about the regulation of protein-coding genes by cytokines whereas their effects on the miRNome is less well understood. We performed a microarray screen to identify microRNAs (miRNAs) in human hepatocytes which are modulated by IL-6-type cytokines. Using samples of 2 donors, 27 and 68 miRNAs (out of 1,733) were found to be differentially expressed upon stimulation with hyper-IL-6 (HIL-6) for up to 72 h, with an overlap of 15 commonly regulated miRNAs. qPCR validation revealed that miR-146b-5p was also consistently up-regulated in hepatocytes derived from 2 other donors. Interestingly, miR-146b-5p (but not miR-146a-5p) was induced by IL-6-type cytokines (HIL-6 and OSM) in non-transformed liver-derived PH5CH8 and THLE2 cells and in Huh-7 hepatoma cells, but not in HepG2 or Hep3B hepatoma cells. We did not find evidence for a differential regulation of miR-146b-5p expression by promoter methylation, also when analyzing the TCGA data set on liver cancer samples. Inducible overexpression of miR-146b-5p in PH5CH8 cells followed by RNA-Seq analysis revealed effects on multiple mRNAs, including those encoding IRAK1 and TRAF6 crucial for Toll-like receptor signaling. Indeed, LPS-mediated signaling was attenuated upon overexpression of miR-146b-5p, suggesting a regulatory loop to modulate inflammatory signaling in hepatocytes. Further validation experiments suggest DNAJC6, MAGEE1, MPHOSPH6, PPP2R1B, SLC10A3, SNRNP27, and TIMM17B to be novel targets for miR-146b-5p (and miR-146a-5p). [less ▲]

Detailed reference viewed: 149 (13 UL)
Full Text
Peer Reviewed
See detailLoss of Myosin Vb in colorectal cancer is a strong prognostic factor for disease recurrence
Letellier, Elisabeth UL; Schmitz, Martine UL; Ginolhac, Aurélien UL et al

in British Journal of Cancer (2017), 117(11), 1689-1701

Background: Selecting the most beneficial treatment regimens for colorectal cancer (CRC) patients remains challenging due to a lack of prognostic markers. Members of the Myosin family, proteins recognized ... [more ▼]

Background: Selecting the most beneficial treatment regimens for colorectal cancer (CRC) patients remains challenging due to a lack of prognostic markers. Members of the Myosin family, proteins recognized to play a major role in trafficking and polarization of cells, have recently been reported to be closely associated with several types of cancer and might thus serve as potential prognostic markers in the context of CRC. Methods: We used a previously established meta-analysis of publicly available gene expression data to analyse the expression of different members of the Myosin V family, namely MYO5A, 5B, and 5C, in CRC. Using laser-microdissected material as well as tissue microarrays from paired human CRC samples, we validated both RNA and protein expression of MYO5B and its known adapter proteins (RAB8A and RAB25) in an independent patient cohort. Finally, we assessed the prognostic value of both MYO5B and its adapter-coupled combinatorial gene expression signatures. Results: The meta-analysis as well as an independent patient cohort study revealed a methylation-independent loss of MYO5B expression in CRC that matched disease progression. Although MYO5B mutations were identified in a small number of patients, these cannot be solely responsible for the common down-regulation observed in CRC patients. Significantly, CRC patients with low MYO5B expression displayed shorter overall, disease- and metastasis-free survival, a trend that was further reinforced when RAB8A expression was also taken into account. Conclusions: Our data identifies MYO5B as a powerful prognostic biomarker in CRC, especially in early stages (stages I and II), which might help stratifying patients with stage II for adjuvant chemotherapy. [less ▲]

Detailed reference viewed: 358 (41 UL)
Full Text
Peer Reviewed
See detailCrosstalk between different family members: IL27 recapitulates IFNγ responses in HCC cells, but is inhibited by IL6-type cytokines
Rolvering, Catherine UL; Zimmer, Andreas; Kozar, Ines UL et al

in BBA Molecular Cell Research (2017)

Interleukin-27 (IL27) is a type-I-cytokine of the IL6/IL12 family predominantly secreted by activated macrophages and dendritic cells. In the liver, IL27 expression was observed to be upregulated in ... [more ▼]

Interleukin-27 (IL27) is a type-I-cytokine of the IL6/IL12 family predominantly secreted by activated macrophages and dendritic cells. In the liver, IL27 expression was observed to be upregulated in patients with hepatitis B, and sera of hepatocellular carcinoma (HCC) patients contain significantly elevated levels of IL27 compared to healthy controls or patients with hepatitis and/or liver cirrhosis. In this study, we show that IL27 induces STAT1 and STAT3 phosphorylation in 5 HCC lines and 3 different types of non-transformed liver cells. We were especially interested in the relevance of the IL27-induced STAT3 activation in liver cells. Thus, we compared the IL27 responses with those induced by IFNγ (STAT1-dominated response) or IL6-type cytokines (IL6, hyper-IL6 (hy-IL6) or OSM) (STAT3-dominated response) by microarray analysis and find that in HCC cells, IL27 induces an IFNγ-like, STAT1-dependent transcriptional response, but we do not find an effective STAT3-dependent response. Validation experiments corroborate the finding from the microarray evaluation. Interestingly, the availability of STAT1 seems critical in the shaping of the IL27 response, as the siRNA knock-down of STAT1 revealed the ability of IL27 to induce the acute-phase protein γ-fibrinogen, a typical IL6 family characteristic. Moreover, we describe a crosstalk between the signaling of IL6-type cytokines and IL27: responses to the gp130-engaging cytokine IL27 (but not those to IFNs) can be inhibited by IL6-type cytokine pre-stimulation, likely by a SOCS3-mediated mechanism. Thus, IL27 recapitulates IFNγ responses in liver cells, but differs from IFNγ by its sensitivity to SOCS3 inhibition. [less ▲]

Detailed reference viewed: 233 (24 UL)
Full Text
Peer Reviewed
See detailHypoxia-responsive miR-210 promotes self-renewal capacity of colon tumor-initiating cells by repressing ISCU and by inducing lactate production
Ullmann, Pit UL; qureshi-baig, komal; Rodriguez, Fabien UL et al

in Oncotarget (2016), 7(40), 97-114

Low oxygen concentrations (hypoxia) are known to affect the cellular metabolism and have been suggested to regulate a subpopulation of cancer cells with tumorigenic properties, the so-called tumor ... [more ▼]

Low oxygen concentrations (hypoxia) are known to affect the cellular metabolism and have been suggested to regulate a subpopulation of cancer cells with tumorigenic properties, the so-called tumor-initiating cells (TICs). To better understand the mechanism of hypoxia-induced TIC activation, we set out to study the role of hypoxia-responsive miRNAs in recently established colon cancer patientderived TICs. We were able to show that low oxygen concentrations consistently lead to the upregulation of miR-210 in different primary TIC-enriched cultures. Both stable overexpression of miR-210 and knockdown of its target gene ISCU resulted in enhanced TIC self-renewal. We could validate the tumorigenic properties of miR- 210 in in vivo experiments by showing that ectopic expression of miR-210 results in increased tumor incidence. Furthermore, enhanced miR-210 expression correlated with reduced TCA cycle activity and increased lactate levels. Importantly, by blocking lactate production via inhibition of LDHA, we could reverse the promoting effect of miR-210 on self-renewal capacity, thereby emphasizing the regulatory impact of the glycolytic phenotype on colon TIC properties. Finally, by assessing expression levels in patient tissue, we could demonstrate the clinical relevance of the miR-210/ISCU signaling axis for colorectal carcinoma. Taken together, our study highlights the importance of hypoxia-induced miR-210 in the regulation of colon cancer initiation. [less ▲]

Detailed reference viewed: 214 (35 UL)
See detail“Melanomics”: analysis and integration of whole genomes, transcriptomes and miRNomes of primary melanoma patients
Reinsbach, Susanne; Wienecke, Anke UL; Ginolhac, Aurélien UL et al

in European Journal of Cancer (2016), 61(Suppl.1), 32

Detailed reference viewed: 322 (26 UL)
Full Text
Peer Reviewed
See detailEvolutionary Genomics and Conservation of the Endangered Przewalski's Horse.
Der Sarkissian, Clio; Ermini, Luca; Schubert, Mikkel et al

in Current Biology (2015), 25(19), 2577-83

Przewalski's horses (PHs, Equus ferus ssp. przewalskii) were discovered in the Asian steppes in the 1870s and represent the last remaining true wild horses. PHs became extinct in the wild in the 1960s but ... [more ▼]

Przewalski's horses (PHs, Equus ferus ssp. przewalskii) were discovered in the Asian steppes in the 1870s and represent the last remaining true wild horses. PHs became extinct in the wild in the 1960s but survived in captivity, thanks to major conservation efforts. The current population is still endangered, with just 2,109 individuals, one-quarter of which are in Chinese and Mongolian reintroduction reserves [1]. These horses descend from a founding population of 12 wild-caught PHs and possibly up to four domesticated individuals [2-4]. With a stocky build, an erect mane, and stripped and short legs, they are phenotypically and behaviorally distinct from domesticated horses (DHs, Equus caballus). Here, we sequenced the complete genomes of 11 PHs, representing all founding lineages, and five historical specimens dated to 1878-1929 CE, including the Holotype. These were compared to the hitherto-most-extensive genome dataset characterized for horses, comprising 21 new genomes. We found that loci showing the most genetic differentiation with DHs were enriched in genes involved in metabolism, cardiac disorders, muscle contraction, reproduction, behavior, and signaling pathways. We also show that DH and PH populations split approximately 45,000 years ago and have remained connected by gene-flow thereafter. Finally, we monitor the genomic impact of approximately 110 years of captivity, revealing reduced heterozygosity, increased inbreeding, and variable introgression of domestic alleles, ranging from non-detectable to as much as 31.1%. This, together with the identification of ancestry informative markers and corrections to the International Studbook, establishes a framework for evaluating the persistence of genetic variation in future reintroduced populations. [less ▲]

Detailed reference viewed: 118 (5 UL)