Browse ORBi

- What it is and what it isn't
- Green Road / Gold Road?
- Ready to Publish. Now What?
- How can I support the OA movement?
- Where can I learn more?

ORBi

On the hardness of the hidden subset sum problem: algebraic and statistical attacks Gini, Agnese Doctoral thesis (2022) Detailed reference viewed: 42 (10 UL)Provably Solving the Hidden Subset Sum Problem via Statistical Learning Coron, Jean-Sébastien ; Gini, Agnese in Mathematical Cryptology (2022, March), 1 At Crypto ’99, Nguyen and Stern described a lattice based algorithm for solving the hidden subset sum problem, a variant of the classical subset sum problem where the n weights are also hidden. As an ... [more ▼] At Crypto ’99, Nguyen and Stern described a lattice based algorithm for solving the hidden subset sum problem, a variant of the classical subset sum problem where the n weights are also hidden. As an application, they showed how to break the Boyko et al. fast generator of random pairs (x, g x(mod p)). The Nguyen-Stern algorithm works quite well in practice for moderate values of n, but its complexity is exponential in n. A polynomial-time variant was recently described at Crypto 2020, based on a multivariate technique, but the approach is heuristic only. In this paper, we describe a proven polynomial-time algorithm for solving the hidden subset-sum problem, based on statistical learning. In addition, we show that the statistical approach is also quite efficient in practice: using the FastICA algorithm, we can reach n = 250 in reasonable time. [less ▲] Detailed reference viewed: 96 (8 UL)A Polynomial-Time Algorithm for Solving the Hidden Subset Sum Problem Coron, Jean-Sébastien ; Gini, Agnese in Advances in Cryptology -- CRYPTO 2020 (2020, August 10) At Crypto '99, Nguyen and Stern described a lattice based algorithm for solving the hidden subset sum problem, a variant of the classical subset sum problem where the n weights are also hidden. While the ... [more ▼] At Crypto '99, Nguyen and Stern described a lattice based algorithm for solving the hidden subset sum problem, a variant of the classical subset sum problem where the n weights are also hidden. While the Nguyen-Stern algorithm works quite well in practice for moderate values of n, we argue that its complexity is actually exponential in n; namely in the final step one must recover a very short basis of a n-dimensional lattice, which takes exponential-time in n, as one must apply BKZ reduction with increasingly large block-sizes. [less ▲] Detailed reference viewed: 214 (30 UL)Supersingular Isogeny-Based Designated Verifier Blind Signature Sahu, Rajeev Anand ; Gini, Agnese ; E-print/Working paper (2019) Detailed reference viewed: 53 (5 UL)Improved Cryptanalysis of the AJPS Mersenne Based Cryptosystem Coron, Jean-Sébastien ; Gini, Agnese in Journal of Mathematical Cryptology (2019) At Crypto 2018, Aggarwal, Joux, Prakash and Santha (AJPS) described a new public-key encryption scheme based on Mersenne numbers. Shortly after the publication of the cryptosystem, Beunardeau et al ... [more ▼] At Crypto 2018, Aggarwal, Joux, Prakash and Santha (AJPS) described a new public-key encryption scheme based on Mersenne numbers. Shortly after the publication of the cryptosystem, Beunardeau et al. described an attack with complexity O(2^(2h)). In this paper, we describe an improvedattack with complexity O(2^(1.75h)) . [less ▲] Detailed reference viewed: 73 (17 UL)On the weightwise nonlinearity of weightwise perfectly balanced functions Gini, Agnese ; Meaux, Pierrick E-print/Working paper (n.d.) Detailed reference viewed: 46 (9 UL) |
||